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With the population rapidly declining in Japan, there is a need to automate the workforce. Our study
revealed the key planning process enabling humans to rapidly complete interaction tasks, thereby
pushing us one step closer to realizing interaction robots capable of rapidly assembling components.

Even the most advanced robots are nowhere close to achieving the speed or
robustness of human workers, especially when contact with the environment is necessary to the task

like fitting an object into a hole. We analyzed human strategies when inserting a tool or peg into a
hole, and attempted to replicate the strategy to develop a new robot for contact tasks.
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While deep learning and reinforcement learning have led to advanced robots capable of
generalizing their learning to many tasks, even the most advanced robots of today cannot match the speed
and robustness of human workers at interaction tasks, such as inserting arod into a tight hole. The most
common strategy taken by robots is to separate interaction into the two domains of free movement and
contact control. In free movement, the robot employs position control to align itself the object to insert with
the entrance of the hole. Once contact is established, force control is used where the measurement of the
interaction force is used to guide the object into the hole. While this separation of the two control domains
makes the robot more robust, it comes at the cost of speed. Furthermore, studies of human movements has
revealed that the brain control both the force and the arm’s stiffness during interaction, the latter playing an
important role in stabilization. However, specifically how the force and the arm’s stiffness are regulated
during interaction remains unknown during handheld tooling and other interaction tasks. By studying and
learning from humans completing interaction tasks, this may inspire a biomimetic control law that mimics
the robustness and speed of human force control.

A goal of this study wasto understand how humans control their arm during dynamic interactions
with the environment. Specifically, we were interested in the control law that regulates both the force and
the arm’s stiffness during interaction. By measuring these two variables during handheld tooling, and
analyzing how their time-series changes with practice, we aimed to understand the brain’s interaction
control mechanism to yield afast and robust interaction controller for robots.

A dedicated robotic interface was used to measure the hand’s position, speed and force during
real and virtual tooling tasks. The robotic interface provides force feedback of the interaction, which can
be rendered in a virtual environment to change the size of the object or the width of the hole, enabling us
to precisely control severa parameters and to observe adaptations in the strategy used to insert the object
after practice. We also developed a new method to estimate the stiffness of the armin real time to assessits
change along the trajectory and acrosstrials.

The project started by estimating the human control law when regulating the force to control a
cursor to track a randomly moving target (Figure 1, taken from Takagi et al, IEEE Transactions in Neural
Systems and Rehabilitation Engineering, 2018). Participants exerted a force against a fixed robotic handle
to control acursor’s movement to make it follow arandomly moving target. A linear control law commonly
used in the literature was employed to estimate each participant’s feedback gain. While the force could be
inferred using the estimated feedback gain, the presence of correctional forces (known as submovements)
interfered with the estimation, and did not yield a stable control law that can be used in arobot. This study
revealed that human force control cannot be described as a linear feedback control law, highlighting the
need for more sophisticated control algorithms to reproduce the robustness of human force control.
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Figure 1. A linear control law could not explain the correctional forces observed during a force tracking
task.

The next task was to measure the force and the arm’s stiffness during a handheld tooling task,
but to do so, we had to devel op anew methodology to estimate the arm’s stiffnessin real -time asthe existing
method of electromyography requires a lengthy calibration process, and the stiffness estimate is highly
sensitive to the speed and the force of the movement, making it difficult to obtain accurate measurements
during rapid tooling. We proposed a new method of estimating the arm’s stiffness by measuring the power
grasp force (Figure 2), which showed an insensitivity to the speed and the force of the movement, and we
successfully reproduced observations of the arm’s stiffness reported in other studies (Takagi et al, eNeuro,
2019). Furthermore, we showed that the power grasp forceislinearly related to the magnitude of the arm’s
stiffness during postural control (Takagi et al, Scientific Reports, 2020).
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Figure 2. The newly proposed grasp force measure was shown to be linearly related to the arm’s stiffness
ellipse size. The grasp force provides high temporal resolution estimates of the stiffness without requiring
calibration.

Using the newly developed grasp force measure of the arm’s stiffness, we measured how the
arm’s force, stiffness and trajectory time-series changed over trials during a real and virtual handheld
tooling task (Takagi & De Magistris et al, Scientific Reports, 2020). While in standard reaching movement
(without requiring an insertion), the stiffness remained constant throughout the movement (Figure 3c,
dotted blue line), during insertion the stiffness increased along the movement, peaking during the
interaction with the fixture. Our analysis of the trajectory showed that participants used two strategies
during insertion (Figure 4). In the slow down strategy, the tool was brought nearly to a stop prior to its
insertion into the fixture. In the ballistic strategy, the tool’s peak movement speed was observed during
insertion, enabling participants to complete the tooling task faster. While the ballistic strategy resulted in
some failed attempts requiring a heavy adjustment of the movement, the overall time needed to insert the
tool into the fixture 130 times was shorter with the ballistic strategy. Thus, thisballistic strategy isthe ideal
one that our robotic algorithm should aim for.

Early computational modelling suggests that the ballistic strategy requires a contiguous motion
plan that activates the muscles in the arm based on planning in both the free movement (moving the tool
up to the fixture) and the contact phases. In the near future, the data from the ballistic strategy will be used
to yield arobotic controller based on nonlinear optimal control to control the force and the arm’s stiffness
simultaneously.
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Figure 3. Real and virtual insertion of atool into afixture was examined. The arm’s stiffness increased
slowly along the movement while the tool approached the fixture, reaching its climax at the time of

insertion.
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Figure 4. Two control strategies emerged during insertion. In the slow down strategy, the tool was
brought nearly to a stop prior to itsinsertion into the fixture. In the ballistic strategy, the tool’s peak
movement speed was observed during insertion, enabling participants to complete the tooling task faster.
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