科学研究費補助金研究成果報告書

平成21年6月26日 現在

研究種目:基盤研究(研究期間:2007~2008	B)		
課題番号:19310062			
研究課題名(和文)	低温稼働 SOFC 用ナノ構造化薄膜セリア系固体電解質の作成と評価		
研究課題名(英文)	Fabrication and Characterization of nano-structured CeO_2 thin film electrolytes for low temperature operation of SOFC		
研究代表者			
森 利之(MORI TO	OSHIYUKI)		
独立行政法人物質・材料研究機構・燃料電池材料センター・副センター長			
研究者番号: 8034	43854		

研究成果の概要:

300-500℃の温度範囲において、高い酸化物イオン伝導度を持つ薄膜セリア系固体電解質 材料開発手法を確立することを目的とし、薄膜セリア系固体電解質中のナノ構造の特徴が、 伝導特性に与える影響を精査した。電極/固体電解質界面近傍には、アノードからのNiの拡 散層が観察され、その領域内には、バルク固体中には認められなかったほどの、多量な酸 素欠陥が秩序化した状態が観察され、あわせて多量のCe³⁺の発生が確認された。この秩序化 した酸素欠陥層を制御することが重要であることを明らかにした。

交付額

			(金額単位:円)
	直接経費	間接経費	合 計
2007年度	8, 200, 000	2, 460, 000	10, 660, 000
2008年度	7, 500, 000	2, 250, 000	9, 750, 000
年度			
年度			
年度			
総計	15, 700, 000	4, 710, 000	20, 410, 000

研究分野: 複合新領域

科研費の分科・細目:環境学/環境技術・環境材料

キーワード:薄膜,低温稼働,燃料電池,界面構造,エコマテリアル

1. 研究開始当初の背景

家庭用燃料電池の普及が始まるなか、300 ~500℃という、使い易い温度においても、 高い出力性能を示す薄膜固体電解質を用い た燃料電池の開発が活発に行われているが、 薄膜化することにより、固体電解質の性能が バルク体より低下するなどの問題が残され ていた。

従来の研究では、薄膜固体電解質中の粒界 に、高抵抗の不純物が存在するなどの理由が 考えられてきたが、近年、高純度に薄膜が作 製できる状況になっても、いまだ、その問題 は解決されず、薄膜固体電解質を用いた燃料 電池の特性を十分に高めることが難しく、 SOFC を用いた家庭用燃料電池デバイスの安 定性、信頼性、性能を十分に改善することが 難しい状況にあった。

2. 研究の目的

上記の背景をふまえて、これまで提案者が 行ってきた、セリア系バルク固体電解質中に、 従来は、十分には、その存在が知られていな かった「X線回折試験の検出限界以下に埋も れたマイクロドメイン構造が酸化物イオン 伝導度を低下させる」という研究成果を発展 させ、300-500℃の温度範囲において、高い酸 化物イオン伝導度を持つ、薄膜セリア系固体 電解質材料開発手法を提案することを目的 とする。

3.研究の方法

上記目的達成のために、薄膜セリア系固体 電解質中のナノヘテロ構造を精密に解析し、 そのナノ構造の特徴を、バルク固体との比較 のうえで考察し、伝導機構を理論的に解析す ることを通して、ナノ組織・構造制御手法の 提案を行うこととした。

薄膜の作製は、電気泳動法を用いて行い、 アノード支持膜を作製し、アノードと固体電 解質間のナノヘテロ界面構造と導電特性の 相関性に関する考察を行った。

ナノ構造の解析では、バルク固体にはない 基板と薄膜界面におけるナノ構造の変化と、 そのナノ構造の変化が薄膜物性(導電率)に 与える影響について精査することを通して、 薄膜燃料電池用デバイスの性能向上に及ぼ すナノ組織・構造の変化の影響を明らかにす ることとした。

4. 研究成果

家庭用などの用途に期待される酸化物固 体電解質形燃料電池用には、酸化物イオン が酸化物固体中を拡散できる最低温度が 300℃程度であることと、家庭内で容易に扱 える温度を考慮して、300~500℃において も十分に高い導電特性を安定に示す薄膜デ バイスの作製を行うことが求められている。

しかし、図1に示すように、ドープドセ リアでは、バルク体における導電率が最も 高く、薄膜の厚みを薄くするに従い、その 導電率が低下する傾向にあった。

燃料電池デバイスでは、厚みを薄くする ことで、固体電解質の内部抵抗が減少する ことから、見かけの出力は、薄膜の厚みが 薄いほうが、大きな出力を確認しやすいと 考えられてきた。

図1の結果からも分かるように、燃料電 池デバイスの出力を大きくする目的で、薄 膜の厚みを薄くすると、一方では、薄膜デ バイス中の固体電解質の導電率が低下して しまうという結果が得られている。

導電率の温度依存性に、図1のような膜 圧依存性が生じると、出力を大きくするべ く薄くすればするほど、導電率は低下し、 出力も相対的に小さくなることから、従来 の考え方にもとづく薄膜デバイスの作製で は、大きな出力を生む、薄膜ドープドセリ ア燃料電池デバイスの作製は難し状況にあ った。

この理由を考察するために、アノードに電 気泳動法により形成し、1400℃の温度で、共 焼結を行った。

図1 アノード支持Smドープドセリア薄膜の 導電率とSmドープドセリア焼結体との導電率 の比較(Smドープ量は、20%),薄膜はNi-CeO₂

図2 NiO-CeO₂アノード支持Smドープセリア 膜とNi-CeOxアノード支持Smドープセリア膜 断面のSEM像の比較

図3 粉末及び薄膜X線回折試験による結晶 相の同定

その結果、図2に示すような緻密膜の作製を 行い、水素還元処理を施すことで、図2bにあ るような多孔質Ni-CeOxアノード上に、緻密な Smドープセリア膜を、きれいな電極/電解質界 面をもつ、燃料電池用デバイスとして作製で きたことを、SEM観察により確認した。

粉末及び薄膜X線回折試験の結果から、こ うして得られた薄膜試料は、主として、ホタ ル石型構造を有するセリア相からなるように みえることも分かった。(図3参照)

図2及び図3の結果からのみでは、どうし て導電率が低下するのかが考察することが難 しいことから、電極/電解質界面のより詳細

図4 SEM-EDSを用いた、電極/電解質 界面の元素分析((a)及び(b)は、観察している 箇所が異なる)

な微細構造観察を行うこととした。図4には、 図2(b)において示したアノード支持膜の界 面希望におけるNi元素の拡散挙動を示す。 この図から、サブミクロン程度から1ミクロ ン程度の幅で、アノード側から固体電解質側 へNiが拡散している様子がうかがわれる。

図5 EELSを用いた界面近傍のCe元素分析 結果

図6 EELSを用いた酸素の元素分析結果

この界面近傍の様子を、より詳細に解析する目的で、TEM-EELSを用いて、同じ試料の界面近傍を精査した結果を図5及び図6に示す。

CeのM吸収端スペクトルからCe³⁺とCe⁴⁺の 双方が界面近傍(界面から1ミクロン程度は なれた箇所)に観察され,界面から遠い部分、 すなわち図中では、界面から3ミクロン以上 離れた領域においては、主としてCe⁴⁺が観察さ れた。界面から3ミクロン以上はなれた箇所 から観察された結果は、バルク試料から得ら れた観察結果とほぼ同じであったことから、 界面近傍で、Niが拡散した領域では、Ce³⁺が明 瞭に観察され、Niの拡散と、薄膜固体電解質 内におけるCeの価数変化が対応していること が分かった。

一方、図6から分かるように、酸素k吸収 端スペクトルの観察結果からは、界面から1 ないし2ミクロン以上はなれた箇所では、バ ルク試料と同じ、格子酸素の状態が観察され ていることが分かる。

図6において、Aのピークは、酸素欠陥の 秩序化度合いが大きいほど、その強度も高ま ると言われているピークである。このことは、 Niがアノードから薄膜固体電解質内、1~2 ミクロン程度の深さで拡散すると、その周囲 のCeは3価が安定化し、あわせて、セリア内の 酸素欠陥の秩序化も、著しく高まる結果にな ることが分かった。

従来は、ほんの僅かN i 元素が拡散するこ とで、界面近傍で抵抗が高まるという考えを、 詳細な解析により、界面が高抵抗化する理由 を明確に示したものであり、今後の薄膜固体 電解質を用いた燃料電池デバイス作製設計の うえで、極めて重要な情報を与えるものであ る。

図7 薄膜固体電解質界面近傍における制限 視野電子回折図(a)と高分解能電子顕微鏡観 察結果(b)

図7には、電極/電解質界面領域における制 限視野電子回折図と高分解能TEM観察結果 を示す。電子回折図の背景には、ナノレベル でマトリックスとは異なる組成・構造を有す る領域があることを示す散漫散乱が明確に認 められ、高分解能TEM像(図7(b))には、 セリアとは異なる面間隔を有する領域が広域 にわたり観察されえていた。

これらのことは、いかに、電極/電解質界面 のナノレベルにおける組織・構造の制御が重 要であるかを物語るものである。

図8 アノード支持ドープドセリア薄膜中の 導電挙動の違いの模式図

図2から図7までのマイクロアナリシスの 結果をもとに、ドープドセリア薄膜固体電解 質の微細構造と導電特性の関係を模式的に示 したものが図8である。アノードから固体電 解質側に、Niが拡散することで、固体電解 質内に、ヘテロ界面層が形成され、このヘテ ロ界面層内は、酸素欠陥が秩序化し、セリア とは異なる組織や構造を有するマイクロドメ インが多数存在し、酸化物イオンの拡散を著 しく低下させることが分かった。

図 9 アノード支持Gdドープセリア薄膜の断 面のSEM像(a) 還元処理前、(b) 還元処理 後

次にドーパントをSmからGdに変えて作 製したGdドープセリア薄膜の微細構造の特 徴について、検討した結果を図9に示す。図 9に示した薄膜断面の組織は、先に示した図 2と類似しており、緻密であり、かつ電極と 電解質界面はよく、整合した組織を有するこ とが分かる。

このGdドープセリア薄膜は、Smドープ セリア薄膜よりも、共焼結温度が低く、1200℃ 付近の温度で、図9に見られるような緻密膜 の形成が可能であった。

このことは、アノード層からのNiの拡散 量が、先にSmドープセリア薄膜に比して、小 さいことを意味している。SEM-EDSを 用いた、薄膜断面の元素分析結果においても、 Ni元素の拡散量は、少なく、Smドープセリ ア薄膜に比して、ヘテロ界面層の大きさは小 さくなることが予想された。

図10には、アノード支持Gdドープセリア 薄膜固体電解質の界面近傍から、固体電解質 方向へ向かい、EELSにより酸素k吸収端の

520 530 540 550 Energy loss (eV)

図10

ピークの変化の様子を調査した結果を示す。 (a)は、還元処理前、(b)はアノードを活性化 するために還元処理を行った後の結果である。 両者を比較して分かることは、ヘテロ界面近 傍から固体電解質内部にかけて、ピークAと ピークBには変化は見られず、ほぼ類似の結 果を示していることが分かる。これは、アノ ードからのNiの拡散によるヘテロ界面形成 の影響が、このGdドープセリアでは少ないこ とと良く対応する結果である。

しかし、依然として大きな酸素欠陥の秩序 化の度合いがみてとれる。

この事から、Ni元素の固体電解質内への 拡散を抑制しただけでは、電極/電解質界面の 間に生成する高抵抗なヘテロ界面を、完全に 消しさることはできず、NiO-CeOx電極に代わ る、より酸素欠陥の秩序化の度合いの少ない 界面を形成することが可能な、高性能電極の 提案が必要であることが示唆された。

以上の結果から、従来、アノードからのNi 元素の固体電解質側への拡散が、固体電解質 膜内へ与える影響が、十分には解明されてこ いなかったが、本研究により、電極/電解質界 面で、なにが起こっているのか?どうして、 薄膜の導電特性は、バルク体のそれよりも低 いものになるのかについての理由が明らかに なった。

また、これまで言われてきたように、アノ ードからのNi元素の固体電解質内部への拡散 を抑制するだけでは、電極/電解質界面近傍に 生じる高抵抗なヘテロ界面層をなくすことは できず、新たに高性能でありかつ、セリア系 固体電解質と、ナノレベルで、組織や構造の 整合性のよい電極材料を用いて、燃料電池用 ヘテロ界面の作製を行うことが、今後の薄膜 燃料電池の開発には、必要不可欠であること が、本研究により、初めて明らかになった。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計10件)

 Ou D R, <u>Mori T</u>, <u>Ye F</u>, Miyayama M, Nakayama S, Zou J, Auchterlonie G, and Drennan J, Microstructural characteristics of

samarium-doped ceria (SDC) electrolyte film supported by Ni-SDC cermet anode, Journal of The Electrochemical Society, Vol.156(7), B825-B830(2009).

- ② Yan M, Mori T, Zou J, Ye F, Ou D R, and Drennan J, TEM and XPS analysis of Ca_xCe_{1-x}O_{2-y} (x = 0.05 - 0.5) as electrolyte materials for solid oxide fuel cells, Acta Materialia, 57, pp.722-731(2009). 査読有
- ③ Ye F, <u>Mori T</u>, Ou D R, Zou J, and Drennan J, Compositional and valence state in inhomogeneities in Ce_{1-x}Tb_xO_{2-δ} (0.1≤ x ≤ 0.70), Transactions of the Materials Research Society of Japan,33, pp.1073-1076(2009). 査読有
 ④ Yan M, Mori T, Ye F, Ou D R, Zou J, and
- Drennan J, Effects of dopant concentration and calcination temperature on the microstructure of Ca-doped ceria nanopowders, Journal of the European Ceramic Society, 28, pp.2709-2716(2008). 査読有
- Suga H, <u>Mori T, Ye F</u>, Ou D R, Nishimura T, Drennan J, and Kobayashi H, Conducting properties of M_{0.25}Ce_{0.75}O_{1.875}

(M=Dy, Gd) sintered specimen fabricated by the combined process of pulsed electric current sintering and fast sintering, Transactions of the Materials Research Society of Japan, 33, pp.1085-1088(2008). 査読有

- ⑥ Ye F, Mori T, Ou D R, Zou J, and Drennan J, Growth of Nano-sized Domains during Sintering Process and their Effect on the Ionic Conductivity of Ytterbium-Doped Ceria, Proceedings of the 10th International Conference of the European Ceramic Society, pp.723-727(2008). 査読無し
- ⑦ Mori T, Buchanan R, Ou D R, Ye F, Suga H, and Drennan J, Influence of nano-structural feature of M_{0.25}Ce_{0.75}O_{1.875} (M=Gd, Yb, Y) solid electrolytes on their electronic properties, Transactions of the Materials Research Society of Japan, Vol.32, pp.943-946(2007). 査読有
- ⑧ Suga H, <u>Mori T</u>, <u>Ye F</u>, Ou D R, Buchanan R, Nishimura T, Drennan J, and Kobayashi H, Sintering behavior of M_{0.25}Ce_{0.75}O_{1.875} (M=Dy, Gd) ceramics fabricated using pulsed electric current sintering method, Transactions of the Materials Research Society of Japan, Vol.32, pp.947-950(2007). 査読有
- Mori T, Drennan J, Ou D R, and Ye F, Design of micro-structure at atom level in Dy doped CeO₂ solid electrolytes for fuel cell applications,

Materials Science Forum, 539-543, pp.1437-1442(2007). 査読有

 Buchanan R, <u>Mori T</u>, and <u>Ye F</u>, Investigation of the effect of microstructure on the conductivity of Sm₂O₃- and Y₂O₃doped BaCeO₃ in various atmospheres, Transactions of the Materials Research Society of Japan, Vol.32, pp.959-962(2007). 査読有り

〔学会発表〕(計4件)

- Ye F, Mori T, Ou D R, Miyayama M, Nakayama S, Zou J, Drennan J Effect of Ni Diffusion on the Microstructure of Gadolinium-Doped Ceria (GDC) Electrolyte Film Supported by Ni-GDC Cermet Anode The IUMRS Intern ational Conference in Asia, 2008 (IUMRS-ICA 2008) 名古屋国 際会議場,名古屋 2008/12/09~2008/12/13
 森利之(招待講演)
- 燃料電池の現状と将来,第19回溶接技術 講演会,中央電気クラブ215号室,大阪

2008/12/04

- ③ Yan M, Mori T, Ye F, Ou D R, Zou J, Drennan J, Grain growth behavior and conductivity property of Ca doped CeO₂, The 24th Japan-Korea International Seminar on Ceramics, Shizuoka Institute of Science and Technology, Japan, 2007/11/20~ 2007/11/22.
- ④ <u>Mori T(Invited)</u>, Ou D R, Ye F, Yan M, Zou J, and Drennan J, Design of nano-structured doped ceria solid electrolytes for fuel cell application, Advanced in Functional Nanomaterials 2007, Holiday Inn surfers Paradise, Gold Coast, Brisbane, Australia, 2007/11/11-2007/11/13.

[その他]

the American Institute of Physics と the American Physical Society が共同で運営し ている Virtual Journal of Nanoscale Science & TechnologyのMay issue

http://www.vjnano.org

に主要発表論文番号1、"Microstructural Characteristics of SDC Electrolyte Film Supported by Ni--SDC Cermet Anode"が、注 目論文として再掲載されました。<u>American</u> <u>Institute of Physics と American Physical</u> <u>Society から、注目研究として、選定された</u> ことは、本研究の内容が、国際的にも、高い 評価受けているといえます。

6. 研究組織

(1)研究代表者
 森利之(MORI TOSHIYUKI)
 独立行政法人物質・材料研究機構・燃料電池
 材料センター・副センター長
 研究者番号: 80343854

(2)研究分担者
Fei Ye (FEI YE)
独立行政法人物質・材料研究機構・燃料電池
材料センター・研究員
研究者番号:10450298
Ming Yan (MING YAN)
独立行政法人物質・材料研究機構・燃料電池
材料センター・NIMS ポスドク研究員
研究者番号:70465970

(3)連携研究者 なし