科学研究費補助金研究成果報告書

平成21年 6月 1日現在

研究種目:基盤研究(B)				
研究期間:2007~2008				
課題番号:19340079				
研究課題名(和文) ナノ光学による半導体単一量子ドット中の非線形光学過程の研究				
研究課題名(英文) Optical processes in semiconductor quantum dots studied by nano-				
optics				
研究代表者				
南 不二雄 (MINAMI FUJIO)				
東京工業大学・大学院理工学研究科・教授				
研究者番号:30200083				

研究成果の概要:

光照射された金属探針先端に誘起される表面プラズモンが生成する局在増強場を利用することにより、探 針直下のナノメートルサイズの空間領域の物質のみを強く光励起することができる新しいナノ分光法であ る探針増強ナノ光学分光装置を作成するために、既存の SPM コントローラーを用いて金属探針を液体ヘリウ ム温度で任意の場所に移動させるシステムを作製した。空間分解能が数 10nm の液体ヘリウム温度で動作す るナノ分光装置がほぼ完成した。この装置を用いて実際に InGaN 半導体表面からの発光やラマン散乱の増強 度効果を調べて、この装置の性能を評価した。また、探針増強共鳴レイリー散乱光を調べることにより、ナ ノ領域の半導体の屈折率変化を観測できることを Ge/Si 量子ドット系を用いて実験的に示した。

半導体単一量子ドット内の励起子構造を調べるために顕微分光法を用いた測定も行った。光子相関法を併 用することにより、GaAs 単一量子ドット中の多励起子構造、特に励起子分子、電荷励起子分子状態の詳細を 明らかにした。

GaAs 多重量子井戸における重い正孔(HH)ー軽い正孔(LH)励起子間相互作用のコヒーレント制御を4光波混合法を用いて行った。

交付額

(金額単位:円)

			(亚顶十匹,11)
	直接経費	間接経費	合 計
2007年度	10,000,000	3, 000, 000	13, 000, 000
2008年度	4,600,000	1, 380, 000	5, 980, 000
年度			
年度			
年度			
総計	14, 600, 000	4, 380, 000	18, 980, 000

研究分野:光物性物理学

科研費の分科・細目:物理学・物性 I

キーワード:ナノ光学、半導体、量子ドット、過渡現象、顕微分光、非線形光学

1. 研究開始当初の背景

金属探針先端に光誘起される表面プラズモン が生成する局在増強場を利用することにより、 探針直下の単一量子ドットのみを強く光励起し、 その量子ドットからのラマン散乱光を測定する 探針増強ラマン散乱の報告例が研究開始当初国 内外でいくつか報告されていた。パルス光を用 いれば、単一量子ドット中の動的緩和過程の研 究ができるはずであるとの着想を得た。しかし、 励起光源としてパルスレーザーを使用して、時 間分解分光測定を行った例はほとんどなく、本 研究の緊急性は高いと思い本研究課題を提案し た。

2.研究の目的 光照射された金属探針先端に誘起される 表面プラズモンが生成する局在増強場を利 用することにより、探針直下のナノメートル サイズの空間領域の物質のみを強く光励起 することができる原理的に新しいナノ分光 法である探針増強ナノ光学分光測定装置を 組み上げ、この装置を用いて半導体単一量子 ドット中の励起子が関与する光学遷移を制 御し、単一量子ドット中の線形、非線形光学 過程の詳細を調べることを研究目的とする。

研究の方法

光照射された金属探針先端に誘起される表面プラ ズモンが生成する局在増強場を利用することにより、 探針直下のナノメートルサイズの空間領域の物質の みを強く光励起することができる新しいナノ分光法 である探針増強ナノ光学分光装置を作成するために、 既存の SPM コントローラーを用いて金属探針を液体 ヘリウム温度で任意の場所に移動させるシステムを 作製した。空間分解能が 15nm の液体ヘリウム温度で 動作するナノ分光装置がほぼ完成できた。この装置 を用いて実際に InGaN 半導体表面からの発光やラマ ン散乱の増強度効果を調べて、この装置の性能を評 価した。

また、探針増強共鳴レイリー散乱光を調べること により、ナノ領域の半導体の屈折率変化を観測でき ることを Ge/Si 量子ドット系を用いて実験的に示し た。

4. 研究成果

顕微分光法やナノ顕微鏡を用いて半導体単一 量子ドット中の励起子、多励起子状態を調べた。 特に、顕微分光法と光子相関法を組み合わせて GaAs 単一量子ドット中の多励起子状態、特に荷 電多励起子状態に注目して研究を行った。さら に、コヒーレント制御法を適用するための実験 も行った。

また、金属探針を用いたナノ顕微鏡(ANSOM)の開発を行い、15 nm の空間分解能をもつ ANSOM 装置がほぼ開発できた。作製した ANSOM 装置を 用いて、金ナノロッドのプラズモン分布の観測 を行った。

以下に得られた成果の詳細を示す。

4.1 GaAs 多重量子井戸中の励起子間相互作用 のコヒーレント制御

GaAs/A1_{0.3}Ga_{0.7}As多重量子井戸における重い正 孔(HH) -軽い正孔(LH) 励起子間相互作用のコヒ ーレント制御を行った。GaAs層は9 nmであり、 A1GaAs障壁層は5 nmである。光源として、繰り返 し周波数76 MHz、パルス幅100 fs、の受動モード 同期チタンサファイアレーザーを用いた。測定は 4 Kでおこなった。

挿入図のような測定配置で、2k₂-k₁ 方向の回 折信号強度を観測した。ここでは、相対位相が 田 励起子のエネルギーで常に強めあうように フィードバック制御したフェーズロックパルス 対(時間間隔 t₁, 1)を用いた。HI 励起子のエネル ギーで常にパルス対は強めあうように干渉する が、フェーズロックパルス対の時間間隔を選ぶ

図 4.1.1 回折信号の時間積分強度の t₁₂ 依存性。 t_{1'1}=0(実線), 0.14(灰色線), 0.28(点線) ps。

ことにより LH 励起子のエネルギーでのパルス 対の干渉強度を制御することが出来る。

いくつかのパルス対の時間間隔 $t_{i'1}$ における、 回折信号強度の t_{12} 依存性を図に示す。 $t_{i'1}=0$ ps のとき(実線)周期 0.28 ps のHH-LH 量子ビート が観測できる。フェーズロックパルス対の時間 間隔を HH-LH 量子ビートの周期の半分 ($t_{1'1}=0.14$ ps;灰色線)にすると、量子ビートは 打ち消されるが信号強度は増加する。フェーズ ロックパルス対の時間間隔が HH-LH 量子ビート の周期と一致($t_{i'1}=0.28$ ps; 上図点線)すると、 量子ビートは強めあうが信号強度は減少する。 このことは光パルス対の時間間隔を選択するこ とにより、HH-LH 間の相互作用を制御可能であ ることを示している。

4.2 GaAs 単一量子ドット中の Charged Biexciton

正の Charged Biexciton は電子と正孔をそれ ぞれの基底準位に2個ずつ、さらに励起準位の 正孔を1個持つ。この状態は電子正孔対を1個 消費することで光子を放出するが、その遷移先 は交換相互作用により分裂した2個の状態があ る。さらに、フェルミオンの対称化された関数 で書かれるその2状態間のエネルギー差は電子 正孔間の交換エネルギーに等しい。また、 Charged Biexciton は光子放出後を電子正孔対 1つ持っており、再度発光することが可能であ る。このため Biexciton に似た光子対放出が観 測されるはずである。Charged Biexciton は半 導体の高次の励起状態であり、低温下でも安定 に存在するのは難しい。しかし今回、上記のよ うなエネルギーの微細分裂や光子対放出を観測 することで GaAs 量子ドット内に Charged Biexciton が存在することを示すことに成功し た。

低温(8 K)下の GaAs 量子ドットを強く光励起 すると、量子ドット内の多励起子状態の存在を 反映した鋭い発光ピークが多数観測される(図 4.2.1a)。ここで、時間相関単一光子計数法を応 用した手法である発光強度相関を測定法として

図 4.2.1 (a) 低温下(8 K)での単一 GaAs 量子ドットの光励起発光。(b) XX+まわりの高分解能スペクトル。

用いることで図 4.2.1 のピーク XX⁺ の発光起源 の解明を試みた。強度相関とは単一光子状態や 光子対状態の観測によく用いられる測定法であ る。その測定では、XX⁺ は Charged Exciton の 発光 XX⁺ と光子対を形成している結果が得られ た。さらに XX⁺ は 2 つの微細分裂したピークを 持ち(図 4.2.1b)、どちらの発光も X⁺ と光子対 を形成していることが観測された。これらのこ とから XX⁺ は Charged Biexciton の発光と結論 できた。また観測された電子正孔間の交換エネ ルギーは約 34 μ eV と決定できた。

4.3 チップ増強ラマン散乱法

Siの520 cm⁻¹に現れるラマン散乱信号のチッ プ増強のマッピング測定を行った。試料として バルクのSiを用い、試料とレーザースポットを 固定し銀チップを10 μm角でスキャンした。励 起光は波長 532 nm の Nd: YAG レーザーを用い、 試料表面でのスポット径が約4 μmとなるよう に集光した。図4.3.1にチップ増強ラマン散乱 マッピング像を示す。右のカラーバーはラマン 散乱強度を示す。中央左側の赤い部分が励起レ ーザーのスポットであり、チップがレーザース ポット内に存在する場合にラマン散乱の増強が 表れることが分かる。チップの走査は図の上部 から下部へと行っており、チップ増強効果の見 られたライン上でラマン散乱強度を比較すると、 強度が約1.5倍になっていることが分かる。銀 チップ先端径100 nmの部分のラマン散乱強度が 増強しているものとすると、励起レーザーは回 折限界である 1.2 μm 程度に集光されているこ とから、増強度は

$$0.5 \times \left(\frac{1.2}{0.1}\right)^3 \approx 10^4,$$

程度と見積もることが出来る。試料とチップの 距離が10 nm 程度の範囲でチップ増強効果が現 れるという報告があるので、この場合には増強 度は

図 4.3.1 Si 基板のチップ増強ラマン散乱マ ッピング像

次にレーザースポット内にチップがある場合 とない場合のラマン散乱スペクトルを図 4.3.3 に示す。チップをスポット内に配置することに より、520 cm⁻¹の Si-Si モードのラマン散乱信 号が増強することが分かる。また、チップがあ る場合にはスペクトルが全体的に増加するのは、 チップのプラズマ発光によるものと考えられる。

図 4.3.2 Si 基板のチップ増強ラマン散乱スペ クトル。520 cm⁻¹が Si-Si モードに対応する。 (左) チップ無。(右) チップ有。

4.4 チップ増強発光法

市販のホログラフィックグレーティングに金 40 nm と Alq3 100 nm を蒸着し、チップ増強発 光のマッピング像を観察した。実験配置はチッ プ増強ラマン散乱測定と同様である。グレーテ ィングの格子本数は、600 本/nm~1800 本/nm の ものを調べたが、以下では 1800 本/nm の結果を 説明する。図 4.4.1 にチップがある場合とない 場合における、Alq3 の発光スペクトルを示す。 チップがある場合にはない場合に比べて、約40

図 4.4.1 Alq3(100 nm)/Au(40 nm)/グレーティ ングの発光スペクトル。チップ有と無。

図 4.4.2 Alq3(100 nm)/Au(40 nm)/グレーティ ングのチップ増強発光マッピング像。*Ex* 偏光 (左)と *Ey* 偏光(右)。

倍の発光増強が観測できた。図 4.4.2 に Ex 偏光 (左)と Ey 偏光(右)におけるチップ増強発光マ ッピング像を示す。この測定では、グレーティ ングの場所により増強度の違いがはっきり観測 できた。すなわち、グレーティングの構造によ り、金薄膜でのプラズモン密度が異なり、密度 の高い場所が発光を増強する。それをチップ増 強効果により高い空間分解能で観測することが できている。さらに偏光方向に依存して、プラ ズモン分布が変化することがわかった。チップ 増強発光マッピング測定と同時に測定した AFM 像と比べることにより、Ex偏光ではグレーティ ングの山の両脇でプラズモン分布密度が高くな り、Ev偏光では山の峰に沿ってプラズモン分布 密度が高くなることが分かった。これは時間領 域差分(FTDT)法による電場強度分布計算によっ ても確認することが出来た。

次に化合物半導体 InGaN の発光のチップ増強 効果を測定した。InGaN は 532 nm で励起した場 合、532-700 nm の領域でブロードな発光を示す。 発光のチップ増強効果を測定する為に、銀チッ プを励起レーザースポット中で走査したところ、 発光強度が約2倍になる点を見つけることが出 来た。レーザースポット中の銀チップをこの位 置に固定し試料を走査することにより、発光強 度のマッピング測定を行った。結果を図 4.4.3 に示す。発光強度に揺らぎはあるが、ほとんど の領域で2倍程度の発光増強が観測できた。試 料のいくつかの点で、発光増強が顕著に現れた (図4.4.3の山の部分)。その増強度は5-10倍で あった。InGaN中には金属Inが析出している領 域が存在し、金属In上の局在プラズモンによる 発光増強を、銀チップにより測定できたものと 考えられる。顕著な発光増強は、チップの空間 分解能100nmで測定できていることから、発光 増強測定により局在プラズモン分布を空間分解 能100nmで観測できたものと結論することが出 来る。

TEPL scan

図 4.4.3 InGaN のチップ増強発光像

4.5 チップ増強レイリー散乱法

チップ増強レイリー散乱法を使って、Ge/Si 量子ドットの誘電率分布を観測した。試料とし て Si 基板上の Ge 量子ドット(直径約 220 nm、 高さ約 40 nm)を用いた。 図 4.5.1 (a) に AFM 像を 示す。405 nm 及び 590 nm の CW レーザーを光源 として測定した散乱光強度分布を図 4.5.1(b) 405 nm, (c) 590 nm に示す。Si 基板からの散乱 光強度に対する、Ge 量子ドットからの散乱光強 度が 405 nm と 590 nm で反転していることが分 かる。405 nm においては Si の直接遷移に由来 する誘電率実部の増加により Si の散乱光強度 が Ge のそれに勝り、590 nm においては Ge の M1 サドル点における遷移 ($\Lambda_3 \rightarrow \Lambda_1$)を反映し Ge 量 子ドットの散乱光強度が増加したものと考えら れる。このほかに複数の波長で同様の測定を行 うことにより、Ge 量子ドットの散乱光強度スペ クトルを得ることが出来た。

図 4.5.1 (a) AFM 像。(b) 405 nm 及び(c) 590 nm におけるチップ増強レイリー散乱像。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者には下線)

〔雑誌論文〕(計17件)

- A. A. Toropov, T. V. Shubina, V. N. Jmerik, S. V. Ivanov, <u>Y. Ogawa</u>, <u>F. Minami</u>, "Resonant coupling between a gold-nanosphere plasmon and localized excitons in InGaN" Phys. Status Solidi C6, 619-622 (2009). (査読有)
- T. Fujishima, H. T. Miyazaki, H. Miyazaki, K. Sakoda, <u>Y. Ogawa</u>, <u>F. Minami</u>, "Light propagation from a fluorescent particle embedded in a photonic cluster of micrometer-sized dielectric spheres", Optics Express 16, 20706-20723 (2008). (査読有)
- T. Kihira, Y. Arashida, M.Yamagiwa, <u>Y. Ogawa, F. Minami</u>, N. Koguchi, "Multi-excitonic structures in GaAs quantum dots proved by photon correlation spectroscopy", J. Phys.: Conf. Ser.109, 012019 (2008). (査読有)
- T. Kishimoto, H. Takahashi, A. Hasegawa, M. Sasaki, <u>F. Minami</u>, "Decoherence suppression of excitons in semiconductor using sequential femtosecond pulses", J. Luminescence **128**, 1075-1077 (2008). (査読有)
- T. Kihira, M. Yamagiwa, <u>Y. Ogawa, F. Minami</u>, N. Koguchi, "Exciton and multi-exciton structures in GaAs quantum dots studied by single-photon correlation spectroscopy", J. Luminescence **128**, 800-802 (2008). (査読有)
- T. Kuroda, M. Abbarchi, N.Koguchi, M. Gurioli, <u>Y.</u> <u>Ogawa</u>, <u>F. Minami</u>, "Photon Correlation in GaAs Self-Assembled Quantum Dots", Appl. Phys. Express 1, 042001 (2008). (査読有)
- Y. Ogawa, D. Yokoyama, <u>F. Minami</u>, N. Yamamoto, "Coherent control of electron-phonon scattering and the dephasing process in gallium arsenide multiple quantum wells", J. Luminescence **128**, 1046-1049 (2008). (査読有)
- K. Takasago, <u>Y. Ogawa, F. Minami</u>, "Suppression of decoherence in gallium arsenide multiple quantum wells by means of bang-bang control", J. Luminescence **128**, 1029-1031 (2008). (査読有)
- <u>Y. Ogawa</u>, <u>F. Minami</u>: "Coherent control of Non-Markovian interaction g and the dephasing process in GaAs multiple quantum wells", Phys. Rev. B 75, 073302 (2007). (査読有)
- T. Kishimoto, H. Takahashi, A. Sato, A. Hasegawa, M. Sasaki, and <u>F. Minami</u>: "Decoherence Suppression of Excitons in Semiconductor using Sequential Femtosecond Pulses", AIP Conf. Proc. 893, 167-168 (2007). (査読有)
- T. Kishimoto, H. Takahashi, <u>Y. Ogawa, F. Minami</u>, S. Kuroda, and K. Takita: "Phonon-Induced Exciton Dephasing in CdTe Self-Organized Quantum Dots", AIP Conf. Proc. **893**, 977-978(2007). (査読有)
- M. Yamagiwa, F. Saito, M. Kurasawa, T. Kihira, <u>Y.</u> <u>Ogawa</u>, <u>F. Minami</u>, and N. Koguchi: "Multi-Electronic Structures in GaAs Quantum"

Dots", AIP Conf. Proc. **893**, 921-922 (2007). (査 読有)

- Y. Ogawa, F. Minami: "Coherent Control of Non-Markovian Interaction of Exciton-Folded Acoustic Phonon in GaAs Multiple Quantum Wells", AIP Conf. Proc. 893, 453-454 (2007). (査読有)
- 14) M. Yamagiwa, T. Mano, T. Kuroda, K. Sakoda, G. Kido, N. Koguchi, and <u>F. Minami</u>: "Laterally Aligned GaAs Quantum Dot Molecules Grown by Droplet Epitaxy", AIP Conf. Proc. 893, 109-110 (2007). (查 読有)
- T. Kishimoto, A. Hasegawa, Y. Mitsumori, J. Ishi-Hayase, M. Sasaki, <u>F. Minami</u>: "Decoherence suppression of excitons by bang-bang control", J. Lumin. **122-123**, 539-541 (2007). (査読有)
- 16) <u>Y. Ogawa</u>, A. Iwamatsu, <u>F. Minami</u>: "Quantum kinetics of exciton-folded acoustic phonon in GaAs multiple quantum wells", J. Lumin. **122-123**, 536-538 (2007). (査読有)
- 17) T. Kishimoto, <u>F. Minami</u>, S. Kuroda, K. Takita: "Dephasing of excitons in CdTe self-organized quantum dots", Physica E **40**, 306-309 (2007). (査 読有)

〔学会発表〕(計26件) 国際会議

- <u>Y. Ogawa</u>, <u>F. Minami</u>, "Tip-enhanced Optical Transitions in Semiconductor Nanoparticles", International Symposium on Nanoscience and
- Quantum Physics, Tokyo Japan, 25 March 2009.
 2) Y. Arashida, <u>Y. Ogawa, F. Minami</u>, "Multi-Carrier Complexes in GaAs Quantum Dots Studied by Single Photon Correlation Spectroscopy", International Symposium on Nanoscience and Quantum Physics, Tokyo Japan, 23 March 2009.
- A. A. Toropov, T. V. Shubina, <u>Y. Ogawa, F. Minami</u>, "Resonant coupling between a gold-nanosphere plasmon and localized excitons in InGaN", The International Workshop on Nitride semiconductors (IWN2008), Montreux, Switzerland, 9October 2008.
- 4) A. A. Toropov, T. V. Shubina, Y. Ogawa, F. Minami, "RESONANT COUPLING OF LOCALIZED то **EXCITONS** IN InGaN А GOLD-NANOPARTICLE PLASMON", The International Conference on the Physics of Semiconductors (ICPS 2008) Rio de Janeiro, Brasil, 29 July, 2008.
- A.Sato, <u>F. Minami</u>, K.Kobayashi, "Photon localization and tunneling in a disordered nanostructure", The 15th International Conference on Luminescence and Optical Spectroscopy of Condensed Matter (ICL • 8) LYON, FRANCE, 9 July, 2008.
- Y. OGAWA, F. Minami, "Coherent control of dephasing process and many-body interactions among excitons in GaAs multiple quantum wells, The 15th International Conference on Luminescence

and Optical Spectroscopy of Condensed Matter (ICL • 8) LYON, FRANCE, 9 July, 2008.

- 7) T. Fujishima, H. T. Miyazaki, H. Miyazaki, K. Sakoda, <u>Y. Ogawa</u>, <u>F. Minami</u>, "Light Propagation in Photonic Cluster of Silica Spherical Particles Assembled with Micromanipulation Method" The 15th International Conference on Luminescence and Optical Spectroscopy of Condensed Matter (ICL 8) LYON, FRANCE, 8 July, 2008.
- A.Sato, <u>F. Minami</u>, K.Kobayashi, "New aspects in nanofabrication by near-field photo-CVD", The 18th International Conference on Excitonic Processes in Condensed Matter, Kyoto, Japan, 24 June, 2008.

国内会議

- 嵐田雄介、小川佳宏、南不二雄、「GaAs 量子ド ットにおける多数のカスケード遷移過程」、日本物理学会第64回年次大会(立教大学、2009 年3月30日)
- 2) 戸泉智勝、小川佳宏、南不二雄、都鳥顕司、「チップ増強ラマン分光による Ge/Si 量子ドットの 表面観測」、日本物理学会第 64 回年次大会(立 教大学、2009 年 3 月 30 日)
- 小川佳宏、高橋聡、<u>南不二雄</u>、「散乱型 ANSOM 法による Ge/Si 量子ドットの誘電率分布の測 定」、日本物理学会第 64 回年次大会(立教大学、 2009 年 3 月 28 日)
- 4) 高橋聡、小川佳宏、南不二雄、都鳥顕司、「散 乱型 ANSOM 法を用いた金ナノロッド上の表面プ ラズモン分布の観測」、日本物理学会第64回年 次大会(立教大学、2009年3月28日)
- 5) 戸泉智勝、小川佳宏、南不二雄、都鳥顕司、「InGaN におけるチップ増強発光の観測」、日本物理学 会 2008 年秋季大会 (岩手大学、2008 年 9 月 22 日)
- 6) 高橋聡、小川佳宏、南不二雄、山田紘、山際正 和、都鳥顕司、「チップ増強発光法を用いた金 回折格子の表面プラズモンの観測」、日本物理 学会 2008 年秋季大会 (岩手大学、2008 年 9 月 22 日)
- 7) 嵐田雄介、小川佳宏、南不二雄、「GaAs 量子 ドットにおける多数のカスケード遷移過程」、
 日本物理学会 2008 年秋季大会(岩手大学、2008 年9月22日)
- 高橋聡,高砂和浩,<u>小川佳宏</u>,<u>南不二雄</u>「時間 分解フォトンエコー法による量子ビートの観 測」日本物理学会第63回年次大会(近畿大学、 2008年3月26日)
- 9) 佐藤新,<u>南不二雄</u>,小林潔「散逸環境下における量子ドット間のスピン-エネルギー転送過程の耐性と脆弱性」日本物理学会第63回年次大会(近畿大学、2008年3月26日)
- 10) 小川佳宏,南不二雄,山本直克「GaAs 多 重量子井戸における HH-LH 量子ビートの時間分 解測定とコヒーレント制御」日本物理学会第63 回年次大会(近畿大学、2008年3月26日)
- 11) 木平孝和, 嵐田雄介, 小川佳宏, 南不二雄

「強度相関による GaAs 量子ドットの多励起子 構造 II」日本物理学会第 63 回年次大会(近畿 大学、2008 年 3 月 26 日)

- 高砂和浩, 小川佳宏, 南不二雄, 「光ヘテ ロダイン法を用いた半導体 GaSe の時間分解フ オトンエコー信号の形状」日本物理学会第62 回年次大会(北海道大学、2007年9月23日)
- 小川佳宏, 小川翔之, 高砂和浩, 南不二雄, 山本直克, 「光へテロダイン法による GaAs 量子 井戸中の HH-LH 量子ビートの観測」
 日本物理 学会第62回年次大会(北海道大学、2007年9 月23日)
- 14) 田中翔一, 小川佳宏, 南不二雄,
 A. V. Baranov 「Ge/Si 量子ドットの顕微ラマン分光」北海道大学、2007年9月23日)
- 15) 藤嶋敏之,宮崎英樹,笠谷岳士,宮嵜博司, 迫田和彰,小川佳宏,南不二雄,「微粒子マニピ ュレーションによるフォトニッククラスタの作 製と光伝播特性」日本物理学会第62回年次大会 (北海道大学、2007年9月22日)
- 16) 木平孝和,田中翔一,小川佳宏,南不二雄, 山際正和,小口信行「強度相関測定による GaAs 量子ドットの多励起子構造」日本物理学会第62 回年次大会 (北海道大学、2007年9月21日)
- 17) 佐藤新,田中裕二,<u>南不二雄</u>,小林潔「2 次元格子プローブモデルにおけるフォノンと相 互作用する近接場光」日本物理学会第62回年次 大会(北海道大学、2007年9月21日)
- 18) 小川佳宏,小川翔之,高砂和浩,<u>南不二雄</u>, 山本直克「GaAs 多重量子井戸における HH-LH 量 子ビートのコヒーレント制御」日本物理学会第 62回年次大会(北海道大学、2007年9月21日)

〔図書〕(計 1件)

青柳克信、<u>南不二雄</u>、吉野淳二、梶川浩太郎「先端 材料光物性」(コロナ社、2008)316頁

〔産業財産権〕 〇出願状況(計0件)

○取得状況(計0件)

[その他]

6.研究組織
 (1)研究代表者
 南 不二雄 (MINAMI FUJIO)
 東京工業大学・大学院理工学研究科・教授
 研究者番号:30200083

(2)研究分担者
 小川 佳宏 (OGAWA YOSHIHIRO)
 東京工業大学・大学院理工学研究科・助教
 研究者番号:50372462

(3)連携研究者 なし