科学研究費補助金研究成果報告書

平成21年4月20日現在

研究種目:基盤研究(B) 研究期間:2007~2008 課題番号:19360139 研究課題名(和文) ガリウムナイトライド系ヘテロ接合ホール素子を有する高温走査型磁気 顕微鏡の開発 研究課題名(英文) Development of high temperature a scanning Hall probe microscope incorporating a Hall probe fabricated using gallium nitride heterostructures 研究代表者 サンドゥー アダルシュ (SANDHU ADARSH) 東京工業大学・量子ナノエレクトロニクス研究センター・准教授 研究者番号:80276774

研究成果の概要:高温における強磁性体の磁区構造の観察を目的とし、高温走査型ホールプロ ーブ顕微鏡(High Temperature Scanning Hall Probe Microscopy, HT-SHPM)用プローブを作 製した。高温観測のためのプローブに Al 組成比、Si ドープの有無など構造の異なる AlGaN/GaN の温度特性を調べ、感磁部の大きさが2 μ m×2 μ m であるホールプローブを作 製した。作製したプローブの電気特性を評価し、ホール係数は25℃で0.0077Ω/G、400℃にお いては0.0046Ω/Gという結果を得た。また、HT-SHPM を用いて100 ℃以上における強磁性 体ガーネット薄膜の磁区観察、外部磁界印加時の磁区観察に成功した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	7, 400, 000	2, 220, 000	9, 620, 000
2008 年度	6, 600, 000	1, 980, 000	8, 580, 000
年度			
年度			
年度			
総計	14, 000, 000	4, 200, 000	18, 200, 000

研究分野:工学

科研費の分科・細目:電気電子工学・電子・電気材料工学 キーワード:磁性、走査プローブ顕微鏡、磁区、スピンエレクトロニクス、磁気記録

1. 研究開始当初の背景

申請者は、長年、大手企業の基礎研究所で化 合物半導体の結晶成長、及び2次元電子ガス を利用した微細デバイス作製の分野で、先導 的な研究成果をあげた実績を持つ。次世代の 高保磁力永久磁石、超高密度磁気記録技術及 びスピンエレクトロニクスなどには、磁性体 特有の磁区の観察が非常に重要である。申請 者は 2000 年に AlGaAs/GaAs 系半導体マイク ロ・ホール・素子を有する室温走査型ホー ル・素子顕微鏡装置(以下「RT-SHPM」)の開 発を行い、世界に先駆けて 0.8 μmの高空間 分解能で、かつ室温における磁区の観察に成 功した。さらに、申請者は 2003 年、広範囲 (数百μm)の走査かつナノメートルの空間 分解能での観察を可能にした「温度可変形走 査型ホール・素子顕微鏡」(以下 VT-SHPM)の 開発を行い、10 K から室温までの強磁性体の 磁区観察に成功した。今後、磁気記録媒体用 の磁性材料中の磁区及びスピン素子を支配 する磁気スピンの高温における観察が非常 に重要になる。しかし、現在、高温における 定量的かつ高分解能の走査型ホール・素子顕 微鏡技術は存在しない。その理由として、従 来のホール素子の材料である Si、GaAs、InSb 等の半導体は、温度変化により、磁場に対す る出力であるホール電圧が大きく減少し、 120 ℃以上の動作が困難であるという問題 が挙げられる。

国内外における GaN 等のワイドギャップ窒化 物半導体を用いた青色レーザや FET 素子に関 する研究例は多い。しかし、AlGaN/GaN ヘテ ロ構造を利用する高温用のホール素子は申 請者のオリジナルなアイディアであり、この 研究は日本(東工大)以外では行われていな い。申請者が AlGaN/GaN ヘテロ構造を有する ~100 μm 角単体ホール素子の作製と電気的 特性を行い、国内の日本応用磁気学会 (23pE-17、2004 年 9 月)、応用物理学会 (29a-M-3、2005年3月)及び J. Appl. Phys. 99, (2006). で報告し、高い評価を受けてい る。今回の計画では、単体の~数μm角の AlGaN/GaN ヘテロ構造ホール素子と今までの 申請者の走査型ホール・プローブ顕微鏡装置 開発の実績を合わせて、例のない「高温走査 型ホール・プローブ顕微鏡装置」の実現を目 指す。

2. 研究の目的

本研究では従来のホール素子の 120 \mathbb{C} 以上 の動作が困難であることを解決するため、ホ ール素子に用いる半導体材料として2次元電 子ガスを有する AlGaN/GaN ヘテロ構造に着 目し、ホール電圧の温度変化が極めて小さい 約2 μ m角 AlGaN/GaN ヘテロ構造ホール 素子を用いた高感度・高空間分解能「高温走 査型ホール・プローブ顕微鏡装置」(以下 HT-SHPM)を開発することが本研究の目的 である。GaN 系半導体は、(1) 3.4 eV 以上の 広い禁制帯幅を持つ;(2) 比較的電子移動度 が大きい;(3) 材料物性的に弾性定数が小さ い;(4) 化学的に安定である、等の特徴を有 するため、高感度・高温用ホール素子の材料 として好ましいと考えられる。

将来的に、本研究で提案する高温用 AlGaN/GaN ヘテロ構造ホール素子を有する HT-SHPM は、高温での磁性体中の磁区の観 察や、磁性体材料のキュリー温度の局所的か つ精密な測定を可能にすることにより、次世 代のエレクトロニクス産業界に大きなイン パクトを与えると考えられ、研究の意義は極 めて高い。尚、本研究は平成 17~18 年度の 文部省科学研究助成金、萌芽研究 (課題番 号:17656107:研究課題名:「高温用 GaN 系ホール素子の作製に関する研究」)の成果 を活かし、当研究目標の達成を目指す。 3. 研究の方法

高温走査型ホールプローブ顕微鏡(High Temperature Scanning Hall Probe Microscopy, HT-SHPM)は Sandhu らが高温 における磁界分布観察の目的で開発したも のである。本装置はホールプローブとサンプ ルがチャンバー内にあり、プローブを固定し、 サンプルを動かすことにより走査を行い、磁 区を観察する。従来の SHPM では、ホール プローブをチップに金ワイヤーでボンディ ングすることにより電気信号の送受を行う が、HT-SHPM では熱により金ワイヤーが取 れてしまう可能性があった。この問題の解決 策として HT-SHPM では、GaN の硬度が高 いという特徴を生かし、ホールプローブの電 極部分に電気信号の送受のための針を落と してある。これにより、ホールプローブの台 への固定と、電気信号の送受を行うことがで きる。また、ホールプローブは試料に対して 2 ° 傾いており、STM チップを用いること により、トンネル電流をモニターしながら接 近を行う。ヒーターにはセラミックヒーター (1A、100 V) を使用し、温度の監視はサンプ ルの近くに設置した R 型熱電対で行う。加 熱はサンプルを直接ヒーターの上に設置す ることにより行い、500 ℃までの加熱が可能 である。また、ヒーターから熱を試料に集中 させるために試料のまわりに熱遮蔽板を設 置してある。測定を行う際のチャンバー内は ロータリーポンプによって真空引きされて おり、ホールプローブなどのチャンバー内に あるものの酸化を防いでいる。駆動部には XYZ ピエゾアクチュエータを使用し、チャン バーをアクチュエータの上にのせることで 走査を行う。つまり、走査を行う際にはサン プルだけでなく、チャンバー自体を動かす。 10 V の最大制御入力電圧に対し、x-y 方向 の変位は100 μm、z 方向の変位は20 μm となるため、本装置の最大測定範囲は100 μ $m \times 100 \ \mu m \ bar control m \ bar control m \ m \ bar control m \ bar control m \ bar control m \ bar control m \ m \ bar control m \ bar control m \ bar control m \ m \ bar control m \ bar control$ 外には電磁石がついており、これを用いてサ ンプルに垂直外部磁界を印加することがで きる。ホールプローブとサンプルに純鉄のヨ ークによって磁界印加を行え、その最大出力 は 5000 G 程度となる。また、本装置を空気 バネ式除振台の上に設置することにより、外 部からの振動を遮断している。制御系ではピ エゾによる走査、温度調整、ホール電圧の検 出をパソコンで制御し、検出したホール電圧 から磁界を可視化する。制御系で使用するプ ログラムは、VT-SHPM で用いたプログラム に基づいて LabViewTM で作製されている。 HT-SHPM の基本構造を図1に示す。

図1. 高温走査型ホールプローブ顕微鏡の構造

室温から高温までの磁区観察結果を図3.6 に 示す。温度上昇によって磁壁が移動し、磁区 幅が減少したことがわかる。室温での磁区幅 は約90 μ m であり、100 °Cでは約50 μ m で ある。この装置を用いると500 °Cまでの加熱、 測定が可能である。

・GaN/GaNヘテロ構造

窒化ガリウム (GaN) は、Ⅲ族窒化物半導体の 代表的なものであり、高効率青色、緑色及び 白色発光ダイオードが市販されており、非常 に脚光を浴びている。Ⅲ族窒化物半導体は、 BNを除きいずれも室温、大気圧下でウルツ鉱 型の結晶構造を持つ直接遷移型半導体である。 また、同一結晶構造の化合物同士では3元また は4元混晶の作製が可能で、それらもすべて直 接遷移型のバンド構造をもち、バンドギャッ プが室温で1.9 eVから6.2 eVに及ぶため、紫 外域から可視光全域をカバーする発光ダイオ ード、レーザーダイオード及び紫外線検出素 子用材料としても極めて有望な材料である。 しかも、これらⅢ族窒化物半導体は物理的、 化学的にも安定であり、また、AlNやGaNは熱 伝導率が比較的大きいため、通常の半導体デ バイスに比べより過酷な環境・条件下での動 作が可能である。さらに、Ⅲ族窒化物半導体 やそれを用いたデバイスは、安全性の点から も他の化合物半導体に比べ優れており環境に 優しいと言える。Ⅲ族窒化物半導体の性質を 表に示す。

その中で、GaNは電子飽和速度がGaAsの電子飽 和速度よりも大きく、A1GaNは負の電子親和力 を持つことから、また、A1GaN/GaNへテロ構造 にすることにより2次元電子ガスが使えるこ とから、この材料系は高周波・高出力動作の トランジスタや固体電子エミッタなど、新し いデバイスへの応用も期待されている。

・Ⅲ族窒化物の結晶成長法

Ⅲ族窒化物半導体の結晶成長法には、有機金 属気相成長法 (Metal Organic Chemical Vapor Deposition、MOCVD)、分子線エピタキシ法 (Molecular Beam Epitaxy、MBE)、ハイドラ イド気相エピタキシ法(Hydride Vapor Phase Epitaxy、HVPE) などの種類がある。MOCVD 法 は、サファイア(A1203) 基板にバッファー 層を形成することにより良質のエピタキシ ャル層が得られ、GaN の電気的、光学的物性 が改善され、現在もっとも広く用いられてい る方法である。MOCVD 法とは、カチオンとな る金属元素(Ⅲ族)の原料として、アルキル 基(CnHm-)を構成要素に有する有機金属化 合物と、アニオンとなる V 族元素である窒素 を含む原料ガスを、加熱された基板上に送り 込んで基板上に成長を行う成長法である。Ⅲ 族元素の有機金属化合物には TMGa (トリメチ ルガリウム)、TMA1 (トリメチルアルミニウ ム)が、V族元素の原料ガスには水素化合物 であるアンモニア (NH3) が一般的に用いら れる。ドナー不純物にはシリコン(Si)が一 般的であり、原料ガスにはシラン(SiH4)や ジシラン (Si2H6) などが用いられる。成長 時の基板温度は約1000 ℃である。Ⅲ族窒化 物半導体の結晶成長温度は他のⅢ-V族化合 物半導体と比べて高いため、熱対流を抑制す るため様々な配慮、工夫が施されている。

MBE 法による成長には、Ⅲ族源に Ga、A1 の 固体が、窒素源に窒素やアンモニアなどのガ スが用いられる。窒素分子の解離エネルギー が 9.5 eV と大きいため、単に窒素ガスと Ga を基板表面に供給するだけでは GaN の成長は 生じなく、RF 窒素プラズマによって活性窒素 をつくるか、原子状窒素を発生させる必要が ある。原子状窒素は結晶成長に有効であり、 Ga と結合してすぐに結晶に取り込まれる。活 性窒素分子の供給では、活性種のエネルギー と Ga と N が結合するとき放出される結合エ ネルギーとの和が窒素分子の解離エネルギ ーを超えると、窒素分子が分解して GaN の成 長が起こる。ここで、結晶成長の流れの一例 を示す。まず、サファイア基板に前処理を施 し平坦な表面をつくる。さらに成長チャンバ ー内で基板を高温にし、表面クリーニングを 行う。その後に、活性窒素もしくはアンモニ アガスを基板に照射しながら表面窒化を行 った上にバッファー層を形成し、Ⅲ族窒化物 の成長を行う。MBEによる GaN の成長温度は 様々あるが、760 ℃の報告例がある。図3 に MOCVD 装置と MBE 装置の一例を示す。

・AlGaN/GaN ヘテロ構造

AlGaN/GaN ヘテロ構造は、AlGaAs/GaAs ヘテ ロ構造と同様高周波デバイスへの応用が期 待されており、様々な研究がなされているが、 表 に示すように、物性面で AlGaN/GaN の方 が有利に働き、今後の展開が注目されている。 ここでは、AlGaN/GaN ヘテロ構造による 2DEG の発生とその特性について述べる。 AlGaN/GaN について述べる前に AlGaAs/GaAs ヘテロ構造による 2DEG について説明する。 従来の Si 系トランジスタは、不純物添加層 と電子の流れる領域が同じであり、電子移動 度の減少が起こる。そのため、高周波領域で 利得が小さくなり、サブミリ波、ミリ波帯域 での動作が不可能であった。AlGaAs/GaAs へ テロ構造は、不純物添加層と電子の流れる領 域が異なっており、高周波動作が実現する。

これには不純物ドーピングに空間的分布 を持たせる変調ドープの技術が応用されて いる。基本的な AlGaAs/GaAs ヘテロ構造を図 2. (a) に示す。S. I. GaAs 基板上に i-GaAs、 AlGaAs、n-AlGaAs がそれぞれエピタキシャル 成長された構造になっている。n-AlGaAs 層内 は、ショットキー接合とヘテロ接合で空乏化 されており、電子の一部は表面ショットキー メタル側へ移動し、整流性障壁が形成される (図にはソース、ゲート、ドレインは省略し てある)。残りの電子は、GaAs と AlGaAs の電 子親和力の差により、AlGaAs 層内のドナーか ら GaAs へ供給され、2 次元電子ガス(2DEG) を形成する。2DEG はドナー原子と空間的に分 離しており、不純物散乱がなく高移動度とな る。また、GaAs 層と n-AlGaAs 層の間にスペ ーサー層として AlGaAs 層を挿入することに より、電子が流れる領域と不純物が離れ、特 に低温において電子移動度が上昇する(5 K で2.12×106 cm2/Vs)。AlGaN/GaN ヘテロ構 造でも 2DEG が発生するが、AlGaAs/GaAs とは 異なり、AlGaN 層にドーピングを行わなくて も、ウルツ鉱型結晶構造によるピエゾ分極と 自発分極により電界が発生し、ヘテロ界面に 電子層が形成される。この概略を図5 に示 す。図6はAlGaN/GaN ヘテロ構造のエネル ギー準位である。

4. 研究成果

HT-SHPM では100 ℃以上の磁区観察を行う際 に、プローブのオフセットが増すなどの点か ら観察が困難である。プローブに A10.25Ga0.75N/GaN ヘテロ構造を用いていた。 高温 SHPM 用プローブには移動度は高く、ホ ール電圧の温度依存性は低い材料を用いる 方が望ましい。移動度は磁界感度に関ってお り、移動度が高いものの方が高感度を期待で きる。ホール電圧の温度依存性は HT-SHPM の 安定した走査に関わる。温度依存性が大きい 場合、HT-SHPM を用いての高温における強磁 性体の磁区観察時に定量的な測定、正確な磁 区構造の観察が困難になるためである。 電気特性の測定には van der Pauw 法を用い た。これはキャリアの移動度を求める際に、 抵抗とホール係数を組み合わせた測定法で

あり、厚さが一様なサンプルにおいて有効で ある。測定するにあたりそれぞれの試料の大 きさを5 mm 角にダイシングし、4 隅1 mm 角 の部分にオーミックとして Ti/A1/Ni/Au がそ れぞれ 50/200/50/100 (nm) 蒸着されている。

試料の高温評価は高温チャンバーを用いて 行う。チャンバー内はロータリーポンプと油 拡散ポンプにより真空引きをすることで、チ ャンバー内の酸化を防いでいる。チャンバー 内には4本のタングステンプローブ、ヒータ ー等がある。ヒーターには SiC を用いており 1000 ℃まで加熱することができる。ヒータ ーの上にはホール素子台、R型熱電対が設置 されている。試料の直下に熱電対があること で正確な温度での測定が可能である。また、 チャンバー全体の高温下を防ぐために冷却 水が循環する構造になっている。 ホール測定は、高温チャンバーを電磁石の間 に入れた状態で行う。それぞれの温度で外部 磁界を0G~5000Gまで印加し、ホール電圧 を測定する。測定した値からホール係数を算

出する。また、電子移動度は付録Aに示すよ

・AlGaN/GaN ホールプローブの作製

うに van der Pauw 法より算出した。

AlGaN/GaN ヘテロ構造は、2 インチのサファ イア基板(0001) 面に、MOCVD 法によりエピ タキシャル成長して作製されたものを用い た。2 次元電子ガス(2DEG) は上部から約 30 nm のところに存在する。室温における移動度 μ は1.1 × 103cm2/Vs、電子密度 ns は8.3 ×1012 cm-2 である。 HT-SHPM 用ホールプローブの作製に用いる マスクパターンを図 4.19 に示す。素子の大

きさは 4.25 mm 角、感磁部である十字部分の 大きさは 2 μ m となっており、解像度も 2 μ m 程度になるものと考えられる。

AlGaN/GaN ホールプローブの評価

図4ホールプローブ(左)と温度特性

高温におけるホール効果等の測定には高温 チャンバーを用いている。作製したホールプ ローブの高温における VH - B 特性とホール 係数について述べる。図 9 は室温から 400 ℃までにおける VH - B 特性である。 400 ℃においてもホール電圧が磁束密度に 対して線形になっている。これにより 400 ℃ においてもホール素子として動作可能であ ることを確認できた。これにより室温でのホ ール係数が 0.0077 Ω/G、400 ℃においては 0.0046 Ω/G である。ホール係数から求めた。

高温になるに従いホール係数が減少して いる。高温になるに従いホール係数が減少す るのは電子密度が増加するためである。しか し、電子が流れる領域である GaN のバンドギ ャップは約 3.4 eV であり熱励起は考えづら い。原因の1つとして考えられることは、A1N と GaN の熱膨張係数が異なるため、温度が上 昇すると格子定数が変化し、A1GaN/GaN ヘテ ロ構造のピエゾ分極が増加することである。 しかし、高温における格子定数を正確に求め ることが困難であり、また、2.5.3 節でも述 べたようにゲート電極がないため具体的数 値を求めることが困難である。

もう1つの原因として、ドープされたAlGaN 層からの電子の供給が増加したため、2DEGの 電子密度が増加したと考えられる。実際に、 SiがドープされたAlO.15GaO.85Nの電子密度 が温度上昇とともに増加していることが報 告されている。これは、室温ではドーパント から伝導帯への熱励起が完了していないた めであると考えられ、実際にAlO.15GaO.85N ヘテロ構造の場合でも温度上昇に伴って電 子密度が増加していることも報告されてい る。以上の2つの原因のどちらか、または相 互が影響し温度が上昇すると電子密度が増 加すると考えられる。

次に、室温から400 ℃におけるAlGaN/GaN ヘテロ構造のシート抵抗を図12に電子移 動度を図13に示す。AlGaN/GaNの電子移動 度は室温で約1800 cm²/Vs、400 ℃で約240 cm²/Vsである。また、温度上昇に伴い減少し ている。窒化ガリウムの特性を詳細に述べ、 異なる構造のAlGaN/GaNの高温における電気 特性を測定し、構造による違いを示した。Si ドープしてあるものがホール電圧の温度依 存性が小さく、Al組成比が大きいものが高移 動度を示すことを確認し、ホールプローブを 作製した。作製したホールプローブの電気特 性を調べ、高温状態においてもホール素子と して動作することを確認した。

走査型ホールプルーブ顕微鏡 (SHPM)

SHPM を使って試料を観察する場合、プロー ブが検出する磁場の強さは、試料-プローブ 間の距離に敏感に反比例し、距離が大きいと 劇的に減少する。そのため、従来のHT-SHPM では STM チップを利用し、トンネル電流をモ ニターしながら試料との距離を制御してい た。しかし、走査中にもトンネル電流をモニ ターすることにより制御を行うことで、そこ から出るノイズの影響が憂慮されていた。ま た、サンプルの傾きなどで接触した際、ホー ルプローブを抑えている針がずれてしまい、 連続した走査ができなくなるなどの問題が あった。改善案としてたとえ接触してもフレ キシブルに走査可能なようにHT-SHPMを新た に構築した。接触した際に電圧の値として読 み取れるようにストレインゲージを取り付 けた。また、ヨークを薄くすることで接触に よって針がずれる恐れを少なくした。改良し た HT-SHPM は図5に示すとおりである。

図5改良した HT-SHPM

・高温における磁区観察

HT-SHPM を用いてガーネット薄膜の磁区観 測を行った。室温から高温までの磁区観察を 行った結果を図に示す。温度が上昇するに従 い磁区の様子が変化し、磁区幅が減少してい く様子を観測できる。これらの結果から考察 を行う。高温になるにつれて磁区幅が減少し ていき、磁区が観測し辛くなっていく様子が 読み取れる。室温での磁区幅は13µm、100 ℃ での磁区幅は9 µmとなっており、200 ℃以 上になると全体が砂嵐のようになって磁区 の確認ができなくなる。これは温度が上昇す るにつれてサンプル原子の磁気モーメント が一定の方向を向かなくなり、サンプル全体 の自発磁化が減少してみえるためである。温 度が上昇していくに従い自発磁化は減少し ていく。自発磁化が0になったときの温度は キュリー温度と呼ばれており、今回の結果か らは測定したサンプルのキュリー温度は 200 ℃であるといえる。キュリー温度を測定 する方法の中で代表的なものに VSM による飽 和磁界測定がある。今回測定しているサンプ ルはあらかじめ VSM により飽和磁界やキュリ ー温度等が判明しているものである。その結 果によるとキュリー温度は250 ℃程度であ った。あらかじめ判明していたキュリー温度 の値と、今回の結果の値の差が生じる原因は 次のように考えられる。高温になるに従いサ ンプルの磁区幅が減少している。ここから、 200 ℃以上になるとサンプルの磁区幅がホ ール素子の感磁部の大きさよりも小さくな り測定できなくなっていることが考えられ る。

まとめ

本章では作製したホールプローブを搭載 した HT-SHPM の改良した構造と、それを用い てのガーネット薄膜の高温磁区観察につい て述べた。温度を上昇させるに従い室温での 磁区幅は 13 μ m、100 °Cでの磁区幅は 9 μ m、 また 200°Cでは 6 μ mと磁区幅が減少していく 様子の観察に成功した。また、一定温度にお いて、外部磁界を印加した際の磁区構造の観 察を行い磁区構造の変化の観察に成功した。

図15 ガーネット薄膜の磁区構造

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

① T.Ohashi, H. Osawa, <u>A. Sandhu</u>, Contact mode scanning Hall probe microscopy, IEEE Transactions on Magnetics 44, 3252-3254(2008). 査読有

② Z. Primadani, H. Osawa and <u>A. Sandhu</u>, High Temperature Scanning Hall Probe Microscopy (HT-SHPM) using AlGaN/GaN 2DEG micro-Hall Probes, J. Appl. Phys. 101, 09K105-09K106, (2007). 査読有

〔学会発表〕(計3件)

 T. Ohashi, H. Osawa, <u>A. Sandhu</u>, Novel contact mode scanning Hall probe microscopy, International Magnetics Conference 2008 5th May 2008, Madrid, Spain.

② Z. Primadani, H. Osawa and A. Sandhu,

"High Temperature Scanning Hall Probe Microscopy (HT-SHPM) using AlGaN/GaN 2DEG micro-Hall Probes", 10th Joint MMM/Intermag Conference, FH-14, 8th January 2007, Baltimore, Maryland.

 大澤洋貴、プリマダニ ザキ、<u>サンドゥ</u> <u>ーアダルシュ、AlGaN/GaN 系ホール・プロー</u> ブを用いた高温用走査型ホール・プローブ顕 微鏡(HT-SHPM)の開発、春季第 54 回応用物 理学関係連合講演会、29a-SL-7、2007 年 3 月 29 日。

6.研究組織
(1)研究代表者
サンドゥー アダルシュ (Sandhu Adarsh)
東京工業大学・量子ナノエレクトロニクス研
究センター・准教授
研究者番号: 80276774

(2)研究分担者 なし

(3)連携研究者 なし