自己評価報告書

平成 22年4月26日現在

研究種目:基盤研究(B) 研究期間:2007 ~ 2010

課題番号:19360418

研究課題名(和文) 核融合燃焼プラズマにおける輸送の基礎理論の研究

研究課題名 (英文)

Theoretical Research of Transport in fusion burning plasmas

研究代表者

伊藤 公孝 (ITOH KIMITAKA) 核融合科学研究所 大型へリカル研究部 教授

研究者番号:50176327

研究代表者の専門分野:プラズマ物理学、核融合科学

科研費の分科・細目:総合工学・核融合学

キーワード:核融合燃焼、輸送現象、プラズマ乱流、長距離相関現象、過渡応答

1. 研究計画の概要

この研究の目的は、トロイダルプラズマの 乱流や構造形成の理論およびそれらの実験 による検証など、基礎的な方法論に関する近 年の急速な進展を、核融合反応が起きている プラズマへと適用し、将来の核融合実験炉を 用いた研究に必要となる輸送理論の基盤を 提示することである。トロイダルプラズマの 乱流輸送現象が、微視的な揺動の非線型発展 だけではなく帯状流などメゾスケール・ダイ ナミックスや、巨視的径電場など、異なるス ケールの非線型過程の結合に強く影響され ていることを重視する。帯状流のメゾスケー ル・ダイナミックスや巨視的径電場にたいす る核融合反応生成物の効果を繰り込み、現在 未解決な問題を説明するだけではなく、観測 されているプラズマの単純延長では済まな い、新たな輸送現象の姿を明らかにすること を目指す。理論やシミュレーションによる予 測を提示すると共に、新たな機構の検証法を 統合的に進めることにより、人類が初めて遭 遇する制御核融合プラズマの輸送現象に対 し先進的な学術基盤を提供することを目的 とする。

2. 研究の進捗状況

研究の発足以来、全体計画として(イ)(非線型不安定性駆動の場合まで含めた)ミクロ乱流ダイナミクスと、(ロ)帯状流などのメゾスケール構造との結合を繰り込み、(ハ)径電場分岐や径電場勾配による乱流抑制などに代表される乱流・構造相転移などのダイ

ナミクス含んだシステムを、核融合燃焼の効果を視野に入れた研究を進めてきた。

核融合燃焼状態における長距離相関現象 の代表として、径方向の長いスケール長効果 による、帯状流の非局所性を繰り込んだ輸送 理論を具体的に発展させてきた。微視的乱流 の相関長と、メゾスケール揺動の相関長が異 なる事に着目した研究を進めた。この機構に 着目すると、空間的にはなれた位置の(直接 は相互作用しない) 微視的乱流揺動が、メゾ スケール揺動を介しエネルギーのやり取り を持つという、従来研究されてこなかった過 程を解析する事が出来た。基本的な考え方を 「帯状流による輸送抑制と輸送のシーソー 効果」 に示している。この方法に立脚し、 ダイナミックスを解析している。空間的には なれた位置での乱流輸送が、拡散過程による 伝達より速い時定数で影響しあう事が予言 される。これらをとりまとめ、核融合反応を 視野に入れた多スケール結合を繰り込んだ 乱流輸送の理論を体系的に検討している。同 時に、ヘリカル系の輸送を解析し、ヘリカル 系で重要な役割を果たしているリップル捕 捉粒子が作り出す径電場が帯状流を通じて 異常輸送に与える影響が定量化されてきた。 また、イオンサイクロトロン共鳴加熱により 回転が励起される可能性について定量的研 究へと発展した。

3. 現在までの達成度

①当初の計画以上に進展している。

核融合燃焼状態における長距離相関現象の代表として「輸送におけるシーソー機構」

4. 今後の研究の推進方策

これらの成果を取りまとめる。並行してさらなる進展を得るため研究を進める。乱流輸送理論と非線型理論は代表者が中心になり推進する。多スケール構造やヘリカル系による検証については、輸送解析コードを用いて分担者が進めるほか、研究協力者と代表者が共同で輸送理論を展開する。以上を統合して、理論及び検証法からなる「核融合燃焼プラズマの輸送理論の基盤」の体系的成果を発信する。

5. 代表的な研究成果

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計20件)

- ① <u>K. Itoh</u>, <u>S. Toda</u>, 4 名, Turbulent Transport of Poloidal Momentum in Toroidal Plasmas
- J. Phys. Soc. Jpn. **76** (2007) 084502, 1-4, 査読 有
- ② <u>K. Itoh</u>, 7 名, On Imaging of Plasma Turbulence, Plasma Fusion Res. Vol. **2** (2007) S1003, 1-7, 查読有
- ③ <u>K. Itoh</u>, <u>S. Toda</u>, 6 名, Physics of internal transport barrier of toroidal helical plasmas, Phys. Plasmas Vol.**14** (2007) 020702, 1-4, 查読有
- ④ <u>K. Itoh</u>, 3 名, Seesaw Mechanism in Turbulence-Suppression by Zonal Flows, J. Plasma and Fusion Res. Series **8** (2009) 119, 1-3, 查読有
- ⑤ <u>K. Itoh</u>, Summary of IAEA Technical Meeting on Plasma Instabilities, Nucl. Fusion **50** (2010) 054001, 1-13, 査読有
- ⑥ A. Fujisawa, <u>K. Itoh</u>, 20 名, Experimental Evidence of a Zonal Magnetic Field in a Toroidal Plasma, Phys. Rev. Lett. Vol.**98** (2007) 165001, 1-4, 查読有

〔学会発表〕(計20件)

① <u>K. Itoh</u>, 'Summary' at IAEA Technical Meeting on Plasma Instabilities (Kyoto, May 2009).

他

[図書] (計4件)

- ①K. Itoh, 4名, On the onset of collapse events in toroidal plasma turbulence trigger for neoclassical tearing mode in tokamak in *Relaxation Dynamics in Laboratory and Astrophysical Plasmas*, Chap.10 (World Scientific, 2010) 295-319
- ②P.H. Diamond, S.-I. Itoh, <u>K. Itoh</u>, A Tutorial on Basic Concepts in MHD Turbulence and Turbulent Transport, in *Relaxation Dynamics in Laboratory and Astrophysical Plasmas*, Chap.4(World Scientific, 2010) 119-150