科学研究費補助金研究成果報告書

平成 21 年 6月 8日現在

研究種目:基盤研究((C)			
研究期間:2007~200	8			
課題番号:19560) 1 2 1			
研究課題名(和文)	電磁力励振式超音波スピンドルの試作とそれを用いる小径内面の精密 研削技術の開発			
研究課題名(英文)	Development of an Electromagnetic Force Induced Ultrasonic Spindle and Its Application in Internal Grinding of Small Holes			
研究代表者				
呉 勇波(WU YONGBO)				
秋田県立大学・システム科学技術学部・教授				
研究者番号:10302176				

研究成果の概要:まず超音波回転体や電磁石を中心に電磁力励振超音波スピンドルを設計・製作した.励振試験の結果,共振現象が確認され,最大振幅が 0.2µm 程度と得られた.次に耐摩耗性に優れ,また鏡面研削に適しているメタルボンド微粒ダイヤモンド砥石を小径内面研削に適用する際のツルーイング・ドレッシング条件の最適化を検討した.最後に既設内研機を適宜に改造し,市販の圧電式ロータリ超音波スピンドルを搭載して比較実験を行い,超音波援用研削の加工特性を詳細に調査した.得られた知見が次のように要約される: (1)メタルボンドダイヤモンド砥石のツルーイングで超音波を援用するとツルーイング効率と精度が高くなり,特にボンドテールの発生が抑制され,作用砥粒数が増える;(2)砥石を超音波微振動させながら研削すると研削特性(研削抵抗,表面粗さ,内径真円度,研削比)が向上する;(3)研削特性に及ぼす超音波振動,回転数,切込み速度,砥石種類影響を明らかにした;(4)#5000 微粒砥石目づまりなしで使用可能になり,Ra20nm 程度の鏡面を得ることができた.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	2,800,000	840,000	3,640,000
2008年度	800,000	240,000	1,040,000
総計	3,600,000	1,080,000	4,680,000

研究分野:工学

科研費の分科・細目:機械工学・生産工学・加工学

キーワード:研削加工,超音波振動,内面研削盤,超音波スピンドル,高周波スピンドル

1.研究開始当初の背景

自動車エンジンの燃料噴射装置の内面加 工に見られるように,直径数mm程度の小径 内面を精密に加工する需要が多い.これら小 径内面の研削加工では,砥石直径が数mm程 度であるため,砥石軸に研削能率と表面粗さ を考慮して数万~十数万min⁻¹の高速スピン ドルを用いるのが主流である.最近,更なる 小径化や高精度化に対応するために,20万min⁻¹以上の超高速スピンドルが求められる ようになった.しかし,このように超高速な スピンドルはまだ開発中にあり,それを備え る加工機は極めて高価になるであろう.また, 高速回転による振動や軸受部の発熱などの 問題がスピンドルの性能の発揮を妨げるこ とが予想される.このような情勢の下で,低 速のスピンドルを用いても高速の場合と同 等あるいはそれ以上の加工特性を得ること ができる新しい技術の開発が強く求められ ている.

砥石側あるいは工作物側に周波数20kHz以 上振幅数十 μm の超音波振動を付加すると, 研削抵抗の低減や砥石のセルフドレッシン グ効果および研削点での冷却促進などの利 点があるため,加工能率と表面粗さが向上す るだけではなく,残留応力が小さく研削損傷 の少ない加工面も得られる.この点に着目し, 小径内面の精密加工技術の新たな開発を目 的に,数年ほど前より圧電励振式超音波スピ ンドルを備えた平面研削実験装置を試作し て,加工力と表面粗さに対する超音波微振動 の効果などを調べていた.その成果より,小 径内面の精密研削に超音波スピンドルを用 いると,回転数が従来の十分の一程度と低く ても要求加工特性が得られ,特に微粒砥石が 使えるために従来技術でできない鏡面レベ ル内面加工が実現されるとの見通しを得た.

しかし,供試超音波スピンドルは,圧電励 振式であり,構造が複雑でメインテナンス性 は良くないだけではなく,接触式給電装置に おける接触不良や摩耗および発熱が発生す るなど問題点がある.これら問題は,非接触 給電磁歪式超音波スピンドルを使用すれば 解決されると考えられるが,高周波損が大で エネルギー変換効率が悪い.そこで,全く新 しい超音波発生法を提案し,接触式給電装置 が不要でエネルギー変換効率のよい超音波 スピンドルを開発することが急務になって いる.一方,供試砥石は,従来の高速スピン ドルによる内研に慣用されているビトリフ ァイドボンド砥石で,低速研削時の高い研削 抵抗や超音波微振動による大きな衝撃力に よって摩耗が激しく実用の点では寿命が短 すぎる.したがって,耐摩耗性に優れた砥石 を導入する必要がある。

2.研究の目的

上に述べたような背景で電磁力励振という新しい励振方法を考案し,圧電素子と磁歪材料を使用せずに構造がシンプルないわゆる電磁力励振式超音波スピンドルの開発に着手した.また,メタルボンドダイヤモンド砥石が耐摩耗性に優れているが,それを小径内面研削に適用したときのツルーイング・ドレッシング特性や研削特性を体系的に明らかにする必要がある.本課題研究では,電磁力励振式超音波スピンドルを設計・試作しその動作特性を確認すること,またメタルボンドダイヤモンド砥石をツルーイング・ドレッシングする条件の最適化および直径数 mm 程度の内面研削に用いるときの加工特性の体系的把握を研究目的とする.

3.研究の方法

上述目的を達成するために次の各項目についてそれぞれの手法で研究を進めていた.

 (1) 電磁力励振式超音波スピンドルの設計, 製作と動作特性試験
 超音波回転体を中心要素とした電磁力励

振式超音波スピンドルの構成と励振原理を 図1に示す.すなわち,超音波回転体は軸受 とそのハウジングを介して左右二つのフラ ンジでベースプレート上に支持固定し,カッ プリングを介してモータによって回転駆動 される.超音波回転体の共振モードを3つの 節点(振幅がゼロの点)を有する縦3次振動 (L3 モード)とし,超音波振動が拘束されない ように左右のフランジをそれぞれ左右の節 点に設ける.一方,中央節点の左右に超音波 回転体と同一の強磁性材料で一体化したデ ィスク状磁石ターゲットをそれぞれ1個設 け,この2つのディスクに向き合って電磁石 を取り付けた2つのホルダをベース上に固 定する.いま,信号発生器と電力増幅器から なる電源装置から周波数が L3 モード振動数 の近傍にある交流電圧を電磁石に印加する と,ディスクに変動磁気引力が働き,超音波 回転体が励振される.印加電圧の周波数と振 幅,そして電磁石とディスク間のギャップ および電磁石の配置数と容量を変えること によって励振パワーが調整され,回転体の超 音波振幅が増減する.

図 1 電磁力励振式超音波スピンドルの構成 と励振原理

超音波回転体の構造と寸法は,次の点を考 慮して設計した:a)通常の超音波援用加工に おける振動数が15~60kHzであることから回 転体の振動数を20kHz以上;b)回転体を安定 に支持するため,また超音波振動が拘束され ないようにL3モードの左右二つの節点に支 持用フランジを設ける;c)電磁石からの電磁 力を受けるために駆動ディスクをL3モード の腹部に設ける.これら条件を満たすように, FEM 構造解析によってフランジや駆動ディ スクおよび回転軸を一体化した回転体の構 造寸法を求めた.なお,回転体の材料として 超音波振動が励起されやすい磁性材のS45C とした.以上のように設計した回転体はS45C 棒材を削りだすことによって製作した.

次に,実際に製作した超音波回転体の縦3 次振動の周波数を知るために,図2に示す方 法でハンマリングテストを行った.超音波回 転体は,吊り下げて自由状態とする.端面を インパルスハンマで加振し,汎用振動計を介 して,FFT アナライザに打撃信号を入力する. また,片端面にはレーザードップラー振動計 を用いてレーザビームを当て,振動振幅を FFT アナライザに出力し,出力信号の周波数

分布を求める.

さらに鉄心などにコイルを巻きつけた構造をもつ電磁石の設計・製作を行った.強い磁場(ついで電磁力)を得るには鉄心に透磁率 µの高い純鉄を選定し,また同じ観点からコイル材を選定した.さらに磁石の発熱による特性の低下を防ぐために冷却措置もとるようにした。寸法は,設置スペースを考慮した上,またこれまでの予備実験の知見に基づいて設計した.なお製作は外注で行った.

図4 励振試験の概念図

最後に軸受とそのハウジング・ベースプレ ートおよびモータとカップリングなどは,要 求回転精度と機械的強度および最高回転数 を考慮して設計・選定した.

以上で設計製作した各部品でスピンドル を組み立て,電磁石の動作試験と超音波回転 体の励振試験を行った.図3と図4にそれぞ れ電磁石動作試験と回転体励振試験の方法 を示す.電磁石動作試験では,信号発生器と バイポーラ電源を接続した電磁石を卓上旋 盤のチャックに固定し,ツールヘッド上に三 分力動力計を介して磁性体を取り付ける.電 磁石に電流を流すと,磁性体に電磁力を作用 され,その大きさと周波数は動力計とチャー ジアンプからなるシステムで検出される.

-方励振試験(図 4)では,一枚の駆動デ ィスクにつき直列に接続している4つの電磁 石を対向配置する.交流電圧を印加すると, 電磁石からの変動磁気力が駆動ディスクに 作用して回転体の超音波振動が引き起こさ れる.回転体先端の振幅と周波数の測定は、 レーザードップラー振動計と FFT アナライ ザによって行う.電磁石端面と駆動ディスク 側面の距離δは, すべての電磁石について同 じにする.実験では,初めに励振周波数をハ ンマリングテストで特定した共振周波数の 近傍に変化させながら回転体の縦3次振動の 周波数特性を測定し,その共振点を特定する. そして,励振周波数をこの共振点に固定し, 印加電圧が回転体先端の振幅に及ぼす影響 を調べる.

(2)メタルボンドダイヤモンド砥石のツルー イング・ドレッシング条件の最適化検討

GC カップ砥石を用いたツルーイング・ド レッシングにおいて,ツルーイング精度と効 率の向上を狙って砥石に超音波微振動を与 えるときのツルーイング特性を調べツルー イング条件の最適化検討を行った.図5 Lツ ルーイング原理を示す.即ち,超音波微振動 を砥石軸方向に与えながら回転数 ng で回転 する研削砥石を,回転数ndで回転するカップ 砥石に速度 Vrで往復運動させながら1往復運 動するごとに切込み深さδを与えて行う.実 験は,圧電式超音波スピンドルを備えた NC 内面研削盤を用いて行った.またツルーイン グ抵抗は,スピンドルの下に設置した動力計 によって測定した.供試砥石は,微粒(#3000) のメタルボンドダイヤモンド砥石(5mm) で,GC カップ砥石の粒番は#80 で内外径は 30mm と20mmであった 実験条件としては、 超音波無し(振幅 A=0)か有り(振幅 A=8μ m), 周波数 f=40kHz, ng=3000,6000rpm, n_d =3000, 4700rpm , V_r =0.1m/min , δ =1.5 μ m/c した.なお,実験は水溶性研削液を供給しな がら行った.これら条件でのツルーイング抵 抗や得られた砥石の形状精度および砥石表 面トポグラフィーについて評価し,最適ツル -イング条件を特定した.

そして、ツルーイングや研削時に超音波を 援用するかしないかによって加工特性がどう変化するかについて実験調査した.図6に 超音波援用内面研削の概念図を示す.回転数 n_w で回転する工作物に対し、超音波微振動を 砥石軸方向に付加させながら回転数 n_g で回転する研削砥石を切込み速度 V_c で加工を行 なう.なお、研削中水溶性研削液を供給した.以上の条件での研削抵抗や研削後の工作物 表面粗さと真円度などについて比較する.表 1に超音波の援用パターンを示す.またツル ーイング条件は、A=0、8 μ m、f=40kHz、 $n_g=3000$ rpm、 $n_d=4700$ rpm、 $V_r=0.1$ m/min $\delta=1.5\mu$ mにし,研削条件は,A=0,8µm,f=40kHz, n_g=4000rpm,V_c=0.1m/min,工作物回転数 n_w=300rpmにした.なお工作物はSUS440C製 リング状(内径8mm外径25mm)であった.

図6 超音波援用内面研削の概念図

(3)小径内面の研削における加工特性の体系 的調査

超音波援用の有無について研削実験を行 ない,諸加工パラメータが加工特性にどのよ うな影響及ぼすかを体系的に調査した.加工 は,前出の図6に示した方法に砥石のオシレ ーション運動を加えることによって行った. 工作物も 3-2 節と同じものを使用し,それを 研削盤の三つ爪式チャックに取り付け,取付 けの際にダイヤルゲージで工作物内径部の 振れを 2µm 以内になるように調整した.

実験内容としては,(a)砥粒粒度の違う砥石 を用いるときの超音波援用の効果を調査す る;(b)粒度#1000の研削砥石を用いて研削砥 石と工作物の回転数の影響を調べ,両者の最 適値を特定する;(c)形状精度の向上を図るた めに研削砥石切込み速度やオシレーション 運動の影響を調査する;(d)#5000の微粒砥石 を使用するときの到達加工精度を調査する.

ッルーイング条件を *A*=8µm, *f*=40kHz, *n_g*=3000rpm, *n_d*=4700rpm, *V_r*=0.1m/min, δ=1.5µ m, #80GC カップ砥石に固定し,研削条件を *A*=0, 8µm, *f*=40kHz, *n_g*=2000~6000rpm, *V_c*=6 ~140µm/min, *n_w*=150~450rpmにした.なお 工作物は 3-2 と同じものを使用した. 4.研究成果

 (1) 設計・製作したスピンドルの特性 図7に設計製作した超音波回転体の写真を 示す.超音波回転体の寸法は,全長 330mm, 駆動ディスクの直径 96mm,フランジの直径 50mm,超音波回転体先端の径 12mm であった.また共振周波数は,ハンマリングテストの結果 22.48kHz で設計値の 22.06kHz にほぼ 一致する.また製作した電磁石の作り出す磁気力は,印加電圧の直流分を 5V に固定し, 変動分の振幅を増加することによって行った動作試験の結果,変動分振幅の増加に伴い 直線的に大きくなることがわかった.さらに, δ が小さいほど磁気力が大きくなる傾向も見られた.

図7 設計・製作した超音波回転体の写真

図8 組み立てたスピンドルの外観写真

図 8 に,設計・製作した各部品を組み立て てできたスピンドルの全体イメージを示す. このスピンドルについて図 4 に示した方法と 条件(δ =0.5mm,印加の電圧直流分 25V と変 動分振幅 4 ~ 50V,周波数 22.49kHz ~ 22.525kHz)で励振実験を行った.図9にその 結果を示す.同図(a)よりわかるように, 22.585kHz で振幅が最大になり,この点が実際の共振で前出の設計値やハンマリングテ スト結果にほぼ同じである.一方,同図(b) より,振幅が印加電圧にほぼ比例しているこ ともわかる.

(2) メタルボンドダイヤモンド砥石のツルー イング・ドレッシング特性

図 10 にツルーイング抵抗 F はに及ぼす超 音波振幅の影響を示す.F は,振幅の増大と ともに減少し,超音波を援用しない場合と比 べ援用した場合は約 26%減少したことがわ かる.図 11(a)と(b)に,それぞれ超音波援用 なしとありでツルーイングした後の研削砥

石表面観察結果を示す.同図(a)と(b)を比較す ると,超音波を援用しなければ,砥粒後方に 結合剤が長く尾を引いたようにボンドテー ルとして残留しそれの占める面積が広く,砥 粒分布密度が低いことがわかる. 砥粒の分布 密度は,超音波を援用すると26%増大してい る.上述の他に以下の結果と知見も得られて いる:(a)超音波を援用しない場合と比べ,援 用したほうは研削砥石振れが約 36%減少し, その円筒度も改善する;(b)ボンドテールの発 生が超音波の援用によって抑制される;(c)超 音波を援用すると砥粒分布密度が約 26%向 上する;(d)工作物表面粗さは,研削砥石回転 数 n_o=3000rpm,研削砥石切込み量δ=1μm,力 ップ砥石回転数 n=3000rpm で最良であっ た; (e) 研削抵抗は, ng=6000rpm, δ=10μm, n_d=4150rpm で最小になった;(f)工作物真円度 は, ng=4500rpm, δ=1µm, ng=4700rpm で最良 になった; (g)工作物円筒度は, ng=6000rpm, δ=5µm, n_d=4150rpm で最もよかった.

(3) 小径内面の研削における加工特性 図 12 に砥石回転数が工作物表面粗さに及 ぼす影響を示す.図中, は超音波援用なし, は超音波援用ありを表す.同図より,超音 波援用なしの場合,砥石回転数の低下ととも に表面粗さが悪化するが,超音波援用ありで は砥石回転数を4000rpmまで低下させても表 面粗さは保たれているのが確認できる.これ は,低速領域であるほど砥粒が工作物表面上 に描く正弦波状の研削痕の波長が増長し,超 音波の効果がより効率的に得られるためで あると考えられる.また,2000rpmまで減速 すると表面粗さは改悪する.これは,ボンド テールと工作物との干渉によるものである と考えられる.

図 13(a),(b) に , それぞれ SD5000M , n_g =4000rpm , n_w =300rpm , V_c =60mm/min , $A_{p,p}$ =8 μ m)の研削条件で得られた超音波援用 なし・ありにおける研削後の工作物表面写真 を示す.超音波援用なしの場合と比較し,援 用ありのほうは,格子模様の写り込みがよく, 良い表面状態が得られていることがわかる. 上述の他に加えて,超音波の援用によって 以下の効果も確認されている:(a)研削抵抗は 法線方向で最大 51%,接線方向で最大 55%低 減した;(b)表面粗さは最大で 82%向上した; (c)真円度と円筒度は最大でそれぞれ 48%と 84%改善した;(d)材料除去能率は最大で 600%増大した;(e)本実験条件範囲内において SD5000M, *ng*=4000rpm, *nw*=300rpm, *Vr*=60mm/min, オシレーション速度 0.1m/min の条件で最も良い加工特性が得られ,表面粗 さ*R*_0.088µm, 真円度 0.235µm,円筒度 0.553µm となった.

(a) 超音波なし (b) 超音波あり 図 13 超音波援用なし(a)・ありで得られた 加工面写真

5.主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

<u>M. Nomura</u>, <u>Y. Wu</u>, 他3名, Effects of Grain Size and Concentration of Grinding Wheel in Ultrasonically Assisted Grinding, Key Engineering Materials, 査読有り, 389-390 (2009), pp. 283-288.

<u>野村光由, 呉 勇波</u>, 他 3 名, 小径内面の超 音波援用研削に関する基礎研究—小径砥石 のツルーイング・ドレッシングにおける超音波振 動の効果—, 超音波 TECHNO, 査読無し, 20, 3 (2008), pp.85-88.

M. Nomura, Y. Wu and T. Kuriyagawa, Investigation of internal ultrasonically assisted grinding of small holes: effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel, J. of Mech. Sci. & Tech., 査読 有り, 21, 10 (2007), pp.1605-1611.

Y. Wu, M. Tamano and M. Kato, Inducing a Machine Spindle to Ultrasonically Vibrate by Fluctuating Electromagnetic Force, Int. J. of Applied Electromagnetics and Mechanics, 查読有り, 25, 1-4 (2007), pp.621-626.

[学会発表](計 10 件)

高橋康夫,<u>呉勇波</u>,他2名:超音波援用研削 による小径内面の研削,2009年 JSME 東北学 生卒業発表会,2009.3.6 in 秋田県立大.

<u>M. Nomura</u>, <u>Y. Wu</u>, 他 3 名, Study of Ultrasonically Assisted Internal Grinding of Small Holes: The effect of Grain Size of CBN Grinding Wheel, AMPT2008, 2008.11.4 in Manama, Bahrain.

S. Yokoyama, <u>Y. Wu</u>, 他3名, Development of a New Rotary Ultrasonic Spindle for Precision Ultrasonically Assisted Grinding, AMPT2008, 2008.11.3 in Manama, Bahrain.

横山将太,<u>呉勇波</u>,<u>野村光由</u>,他3名∶小径

内面の超音波援用精密研削に関する研究 小径超砥粒ホイールのツルーイング・ドレッシ ングについて,2008 年度 JSPE 秋季大会, 2008.9.19 in 東北大川内キャンパス.

横山将太,小松勇気,<u>呉勇波</u>,林 偉民,<u>野 村光由</u>,岳 将士:小径内面の超音波援用精 密研削に関する研究 微粒砥石による鏡面研 削の試み ,2008 年度 JSPE 春季大会, 2008.3.18 in 明治大学生田キャンパス.

小松勇気,<u>野村光由,呉勇波</u>,岳 将士:超 音波援用小径内面の精密研削における砥石 粒度の加工特性への影響,2007年度 JSPE 東 北支部学術講演会,2007.12.1 in 八戸工大.

<u>M. Nomura, Y. Wu</u> and T. Kuriyagawa, Investigation of internal ultrasonically assisted grinding of small holes: effect of ultrasonic vibration in truing and dressing of small CBN grinding wheel, AMPT2007, 2007.10.8 in Daejeon, Korea.

<u>野村光由</u>,<u>呉勇波</u>,他2名:超音波援用小径 内面研削に関する研究 加工特性に及ぼす BN 砥石粒度の影響一,2007年度 JSPE 秋季 大会,2007.9.13 in 旭川市勤労者福祉会館.

横山将太,<u>呉勇波</u>,<u>野村光由</u>,立花 亨:電 磁力励振式超音波スピンドルの製作に関する 研究,2007 年度 JSPE 秋季大会,2007.9.12 in 旭川市勤労者福祉会館.

<u>野村光由</u>,<u>呉勇波</u>,他3名:小径内面の超音 波援用研削に関する基礎研究 研削抵抗に おける小径 (BN 砥石の粒度と集中度の効果-, 2007 年度 JSPE 春季大会,2007.3.21 in 芝浦 工大豊洲キャンパス.

〔産業財産権〕
出願状況(計1件)
名称:回転軸に超音波振動を発生させる装置
発明者:呉 勇波,立花 亨
権利者:呉 勇波,ミクロン精密(株)
番号:特開 2007-268505(特願 2006-101222)
出願年月日:2006年3月31日
公開年月日:2007年10月18日
国内外の別:国内

6.研究組織
(1)研究代表者
呉 勇波(WU YONGBO)
秋田県立大学・システム科学技術学部・教授
研究者番号:10302176
(2)研究分担者(~2007.12)
野村光由(NOMURA MITSUYOSHI)
秋田県立大学・システム科学技術学部・助教
研究者番号:70325942
(3)連携研究者(2008.1~現在)
野村光由(NOMURA MITSUYOSHI)
豊橋技術科学大学・工学部・特任助教
研究者番号:70325942