科学研究費補助金研究成果報告書

平成 21 年 6 月 11 日現在

研究種目:基盤研究(C) 研究期間:2007~2008 課題番号:19560181 研究課題名(和文) ノズル内キャビテーションが液体噴流分裂に及ぼす影響 研究課題名(英文) The effect of cavitation inside a nozzle on liquid jet breakup 研究代表者 大黒 正敏(DAIKOKU MASATOSHI) 八戸工業大学・工学部・教授 研究者番号:70171915

研究成果の概要:ノズル内に生ずるキャビテーション(空洞化現象)を利用して液体噴流の分 裂について,ノズル寸法および内部液体の乱れが,噴出後の乱れにどう影響するかを解析した. 瞬間写真撮影やノズル内圧力変動,液体の乱れの光学的測定を行い,ノズル内キャビテテーシ ョン領域長さがノズル長さと同程度の場合に噴出後の液流の乱れが促進されることを実験的に 明らかにし,他の研究者の数値シミュレーション結果とも一致することを示した.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	1,400,000	420,000	1,820,000
2008 年度	600,000	180,000	780,000
年度			
年度			
年度			
総計	2,000,000	600,000	2,600,000

研究分野:流体工学 科研費の分科・細目:機械工学・流体工学 キーワード:混相流,微粒化,液体噴流,キャビテーション,分裂長さ

1. 研究開始当初の背景

高速液体噴流に関して、低圧でも微粒化促 進ができるように、ノズル内キャビテーショ ンを利用する試みが近年多くなされている.

(1) キャビテーションは、ノズル内の縮流 部形状や噴射圧力等の条件の変化によって、 その発生状態が変わり、ノズル内の流動が乱 されると、噴出後の噴流の分裂にも大きな影 響が及ぼされると考えられる.

(2) 噴射圧力を高圧にすれば微粒化は当然 のように促進する.しかし,機器の耐圧性な どの問題が生じる.そこで,ノズル内キャビ テーションを利用し,低圧力で効率のよい微 粒化促進を目標に長年基礎的研究に取り組 んできた.

2. 研究の目的

本研究は、ノズル内液流の非定常特性が噴 流の挙動に与える影響を解明することを目 的に、下記を明らかにすることを目指す.

(1) 微粒化促進の程度を表す分裂長さを複数の光学的手法(瞬間写真,透過光強度測定等)によって測定し,圧力変動を含むノズル内部の液流の乱れとの関連を明らかにする.

(2)液体噴流表面の乱れを周波数解析し, ノズル内部の圧力変動との関連を検証する. 液流の乱れおよびその後生成される液滴径 が推定可能か否かを検証する.

(3)運転条件(噴射圧力,流量等)と液体 噴流表面の乱れおよび分裂長さとの関連を 解析し,噴流から生成される液滴径の推定を 試みて,低噴射圧でも微粒化促進が可能な圧 力噴射ノズルの設計指針を提示する.

3. 研究の方法

ノズル内液流の非定常特性が噴流の挙動 に与える影響や微粒化促進の程度を表す分 裂長さを解明するために複数の手法(瞬間写 真,透過光強度測定等)によって測定を行っ た.

(1) ノズル内のキャビテーションの状況や, 噴出後の分裂模様は,ナノパルスライトをデ ジタルカメラに同期させることにより透過 光を用いて撮影,観察を行う.

(2) 圧力センサを用いて、ノズル内の圧力 変動を測定・解析を行い、ノズル内流動の測 定を行う.

(3) デュアル光ファイバーセンサの光量が 噴霧粒子群を通過する際,透過光の強度が低 下する.この減衰を利用し,噴流の広がり, 分裂長さの測定を行う.

4. 研究成果

(1) 噴流の観察

図1に噴射圧によるノズル内流動と噴流の 挙動変化を写真撮影した結果を示す.噴射圧 *P*_{inj}=0.3 MPa (図1(1))では,急縮小部から, キャビテーション領域が発生するが、ノズル 内部で減衰・消滅している.噴出後の噴流外 縁部は,比較的規則的な表面波が確認できる. 噴流下流部では,液糸が形成され,粗いなが らも液滴が生成されており、それは、気液相 対速度が原因である他に、ノズル内部でのキ ャビテーションの消滅による大きな圧力変 動が原因と考えられる.

噴射圧 P_{ini}=0.5 MPa (図1(2)) では, 噴 射圧力の上昇に伴いキャビテーション領域 が拡大し、領域はノズル出口付近まで達し、 消滅していることがわかる. 噴出後の噴流外 縁部からは、液滴が生成されている.また、 噴流は、わずかながら広がっていることが確 認できた. 噴流下流部では、分裂の状態が激 しくなり薄膜の形成や噴流のねじれている 様子が見受けられる. 液滴径も P_{im}=0.3MPa に比べ小さく微粒化は促進されている.この 結果は、キャビテーション領域がノズル長さ と同程度になると、 噴流の広がりが大きくな るという Sou らの実験結果と一致している. また、 噴流の分裂長さは、 Pmi=0.3 MPa の 時よりも短くなっていることが確認された. これは、キャビテーションの消滅による大き

な圧力変動がノズル出口付近で起こり,ノズ ル内の液流を撹乱しているためと考えられ る.

(2) ノズル内圧力変動とスペクトル密度

噴流の観察から,噴流の分裂や液滴の生成 は、キャビテーション領域の消滅による大き な圧力変動が原因と考えられるため、ノズル 内部の圧力測定を行った.本実験では、急縮 小部入口を基準として、下軸方向 x=9 mm に て、キャビテーション発生に伴う空洞部の圧 力変動を測定.また、キャビテーションの成 長及び消滅による圧力変動を測定するため、 x=26 mm でも同様の測定を行った.

図2(1)に測定位置 x=9 mm での圧力測定 結果を示す.前節のノズル内流動の撮影結果 からも分かるように、いずれの噴射圧力おい てもキャビテーション領域内での測定となる.測定位置 x=9 mm では,全ての噴射圧力 が-40 MPa以下の負圧となり,噴射圧力の上 昇に伴ってノズル内圧力も上昇する.これは 噴射圧力の上昇に伴い圧力エネルギーが 徐々に減少し,運動エネルギーが増大するた めと考えられる.また,細かな圧力変動は, キャビテーション領域の成長・消滅が繰り返 されることで流れ場の圧力が変動している ものと思われる.従って比較的圧力変動の大 きい P_{inj}=0.8 MPa, 1.0 MPa では,特にその変 化が顕著に現れていると言える.またノズル 内流速の上昇による乱れの影響もあると考 えられる.

図2(2)に測定位置 x=9 mm でのノズル内 圧力変動のパワースペクトルを求めた結果を示す. いずれの噴射圧力においても低周波数のピ ーク出現が顕著であり,噴射圧力の上昇に伴 いその値も大きくなる.ピーク出現が低周波 数に集中するのは,キャビテーション発生時 特有のものでありキャビテーションの発生 による流れ場の変動が,圧力変動を誘発し生 じものである.これが振動や騒音の原因とな る.P_{inj}=1.0 MPa が突出しているのは、ノズ ル内流速の上昇による乱れの影響があると 考えられる.

図2(3)に測定位置 x=26 mm での圧力測 定結果を示す. x=26 mm は、ノズル出口付近 であり、いずれも負圧であるが圧力エネルギ ーが減少するためx=9 mm に比べ出力域が-30 MPa~-40 MPa と全体的に圧力が上昇してい る.また、x=26 mm はキャビテーション領域 の消滅部位の影響を大きく受けるため、噴射 圧力によって大きく出力特性が異なる.

キャビテーション領域が測定孔へ接し始 める P_{inj} =0.5 MPa から圧力変動が激しくなり, 測定孔が完全にキャビテーション領域とな る. P_{inj} =0.6 MPa~1.0 MPa では出力域も-35 MPa 付近で推移するようになり,更に噴射圧 力の上昇と共に圧力変動も比較的落ち着く.

図 2 (4) に測定位置 x=26 mm でのノズル 内圧力変動のパワースペクトルを求めた結 果を示す.パワースペクトルのピークは,測 定位置 x=9 mm 同様に,キャビテーション発 生時特有の低周波数域に集中している.特に キャビテーション領域が測定孔付近で成 長・消滅を繰り返す $P_{inj}=0.5 \text{ MPa}$ は圧力変動 の幅が大きいことから,スペクトルピーク値 も極めて高いことが確認できる.

(3) 噴流の分裂長さの光学的測定

光ファイバーセンサの透過光強度の変化 より,噴出圧力の変化に伴う噴流の分裂長さ の測定を行った.ノズル出口を原点とし,下 軸方向 z=5 mm~130 mm まで 5 mm 間隔で噴 流中心部を測定した.

図3に、各噴射圧力におけるセンサ出力を

図2(2) 噴射圧力のスペクトル密度変化(x=9 mm)

図2(3) 噴射圧力上昇に伴う圧力変動(x=26 mm)

図2(4) 噴射圧力のスペクトル密度変化(x=26 mm)

示している.いずれの噴射圧力においても測 定位置がノズルから離れるにつれ,透過強度 が大きくなっていることがわかる.これは, 下流部に行くほど噴流が乱れているという ことが考えられる.

噴射圧噴射圧 $P_{inj}=0.3$ MPa では、大きな変動がないことがわかる.これは、ノズル内で キャビテーション領域が消滅しているため、 噴流に大きな乱れがなく、噴流中心部に液体 が密に存在していると考えられる.

噴射圧 P_{inj} =0.4~0.6 MPa では、中流部(60~100 mm)で、大きな変動がみられる.これは、キャビテーション領域がノズル出口付近で消滅し、噴出後の噴流が大きく乱れ、分裂しているためと考えられる.

よって、センサ出力の急変動は、分裂長さ を示しており、光ファイバーセンサでの分裂 長さの測定は、従来の電気抵抗式と同様に、 正確な測定ができることを確認した.

5. 主な発表論文等

- 〔雑誌論文〕(計1件)
- 小笠原慎、大黒正敏、ノズル内液体の乱れが噴流に及ぼす影響、八戸工業大学紀要、27巻、9-15、2008年、査読無 〔学会発表〕(計4件)
- 加藤浩二、小林大毅、小笠原慎、<u>大</u> <u>黒正敏</u>、液体噴流の分裂挙動に関す る研究、日本機械学会東北学生会第 39回卒業研究発表講演会、2009年3 月6日、秋田県立大学(秋田県・由利 本荘市)
- 小笠原慎、<u>大黒正敏</u>、稲村隆夫、ノズル 内液体の乱れが噴流の挙動に及ぼ す影響、日本機械学会東北支部第44 期秋季講演会、2008 年 9 月 27 日、 弘前大学(青森県・弘前市)
- ③ 赤川 稔、小山内良太、小笠原慎、大黒 <u>正敏</u>、ノズル内キャビテーションが噴流 に及ぼす影響、日本機械学会東北学生会 第 38 回卒業研究発表講演会、2008 年 3 月 7 日、八戸工大(青森県・八戸市)

 ④ 稲村隆夫、三沢英信、<u>大黒正敏</u>、気流微 粒化におけるキャビテーションの影響、 日本機械学会東北支部第43期秋季講演 会、2007年9月29日、一関高専(岩手 県・一関市)

[その他]

ホームページ http://www.mech.hi-tech.ac.jp/kikai/kenk yuu/k.daikokuken.htm

6.研究組織
(1)研究代表者
大黒 正敏 (DAIKOKU MASATOSHI)
八戸工業大学・工学部・教授
研究者番号:70171915
(2)研究分担者
(3)連携研究者