科学研究費補助金研究成果報告書

平成22年06月16日現在

研究種目:基盤研究(C)
研究期間:2007~2009
課題番号:19560308
研究課題名(和文) 極微細銅配線のための新しい化合物バリヤ材料の検討
研究課題名(英文) Development of new barrier materials of compound for ultra-fine
copper interconnects
研究代表者
野矢 厚(NOYA ATSUSHI)

#P< (NOTA ATSUSHT) 北見工業大学・工学部・教授 研究者番号:60133807

研究成果の概要(和文):Si-ULSIにおける Cu 配線の新規な極薄拡散バリヤ材料としての応用 を目的として Zr-B 薄膜の低温作製を検討した。複合焼結ターゲットを用いたスパッタにより 得られた Zr-B 薄膜は ZrB2を主な相としており、SiO2上ではナノ結晶組織であるが、Cu 薄膜 上ではファイバー組織を呈し、これに伴い膜の抵抗率は基板依存性を示した。膜の組成である B/Zr 比は 2 であったが、酸素、窒素、炭素の不純物の混入が見られた。SiO2上のナノ結晶構 造の Zr-B 膜は 500°C30 分の熱処理においても安定であった。これを踏まえ、3-nm 厚さの Zr-B 膜を Cu と SiO2間のバリヤとして適用し、そのバリヤ特性を検証したところ、極めて安定なバ リヤ特性が得られた。これらのことより、Zr-B 薄膜は Si-ULSI のバリヤとして有望な材料と なることを検証できた。

研究成果の概要(英文): We have prepared thin Zr-B films at low temperatures as a new material applicable to an extremely thin barrier against Cu diffusion in Si-ULSI metallization. The sputter-deposited Zr-B films from a composite target mainly consist of ZrB₂ phase with a nanocrystalline texture on SiO₂ and a fiber texture on Cu. The resistivity of the Zr-B films depends on the substrate of SiO₂ or Cu. The constituent ratio of B/Zr is almost 2, though the contaminants of oxygen, nitrogen, and carbon are incorporated in the film. The nanocrystalline structure of the Zr-B film on SiO₂ is stable due to annealing at temperatures up to 500°C for 30 min. We applied the 3-nm thick Zr-B film to a diffusion barrier between Cu and SiO₂, and the stable barrier properties were confirmed. We can demonstrate that the thin Zr-B film is a promising candidate for thin film application to a metallization material in Si-ULSIs.

			(金額単位:円)
	直接経費	間接経費	合 計
2007 年度	2, 000, 000	600, 000	2, 600, 000
2008年度	900, 000	270, 000	1, 170, 000
2009 年度	700, 000	210, 000	910, 000
年度			
年度			
総計	3, 600, 000	1, 080, 000	4, 680, 000

交付決定額

研究分野:工学 科研費の分科・細目:電気電子工学・電子・電気材料工学 キーワード:薄膜、ZrB₂、化合物、 1. 研究開始当初の背景

現代の情報通信技術分野でのハードウェ アとしての電子システムを構成する電子部 品の根幹を成すのはシリコン集積回路であ り、その微細化と集積密度の向上が、ひとえ に電子システムの高性能化に寄与してきた ところである。集積回路技術の開発は、国際 ロードマップ委員会による年次目標 (International Technology Roadmap for Semiconductors; ITRS)[1]をガイドライン に行われており、それによると、インターミ ディエイト銅(Cu)配線におけるバリヤの膜 厚は 65nm ノード(2007)で、7nm であり、 45nm ノード(2010)では、4.9nm とされてい る。さらにはその次の32nmノードでは、3nm という極めて薄く、かつ有効なバリヤの開発 が目標とされているが、研究開始当初には、 その解決の見通しも得られていなかった。こ のような、極限的な薄膜をその機能を犠牲に することなく実現するには、そのような機能 を発揮する材料の検討から行うことが求め られる。

2. 研究の目的

研究の目標

したがって、この研究課題の目標とすると ころは、3nmという極めて薄く、かつ有効な バリヤの開発を目的とし、新しい発想で、目 標とする機能を発揮する化合物材料を選定 し、その化合物薄膜を作製すること、バリヤ としての機能を実験的に検証することであ り、それによって、3nmバリヤの有効な可能 性を拓くことにある。

(2) 材料の提案

ホウ素は化学的に特異な性質を持つ元素 であり、第1イオン化ポテンシャルは 8.296 eVとかなり高く、第2、第3イオン化ポテン シャルは更に高い。このことは、ホウ素がイ オン性化合物ではなく、強固な共有結合を持 った化合物を形成することを示している。事 実、ホウ素よりも電気陰性度の低い元素(金 属)とMB2型化合物を形成し、強固な2次元 網目構造を持ち、蜂の巣型に並んだホウ素と 金属の簡単な交互の充填構造を取る[2]。こ のような化合物は硬度が硬く、融点が高く、 化学的にはかなり不活性である。とりわけ、 ZrB₂は、電気的・熱的伝導度は金属そのもの より格段に(ほぼ 10 倍)高いのが注目すべ き特徴である[2]。このような特性から、ZrB₂ は高温材料としての特殊な用途があり、航空 産業やロケットのノズルなどの材料として 用いられている。電子材料としては、最近、

バルク結晶を AlN や GaN 薄膜を成長させるた めの基板として研究が行われている。薄膜と しての作製の報告は極めて乏しいが、2002 年 にイリノイ大学の Sung ら[3]によって、リモ ートプラズマ CVD により ZrB₂薄膜の作製が報 告され、20[~]30nm 厚さの薄膜を用い、拡散バ リヤとしても良好な特性を確認している。こ のような状況を踏まえ、ZrB₂薄膜は次世代、 次々世代の極微細配線に対する拡散バリヤ の要求を満足しうる有望な材料と考えられ る。

3. 研究の方法

本研究課題では、したがって、ZrB2薄膜作 製を試み、薄膜としての基本的なキャラクタ リゼーションを明らかとし、材料としての基 礎的データを得て、極薄拡散バリヤとしての 適用性について検証を行う。薄膜作成法とし て高周波2極スパッタ法を選び、ZrとB粉末 を焼成した2インチ径のターゲットを作製し た。ZrB₂薄膜(厚さ 3nm-300nm)を Si(100) ウエファ、熱酸化 SiO₂(100nm)/Si(100)ウエ ファ、及び Cu 薄膜の上に、室温から 500℃の 基板温度にて堆積した。得られた薄膜は真空 中 850℃までの種々の温度で 30-60 分熱処理 を行った。いくつかの試料では、その上に、 直流スパッタにより、Cu 薄膜を堆積し、 Cu/ZrB₂(3-10nm)/SiO₂/Si 積層構造とし、バリ ヤ特性を調べる試料とした。ZrB2薄膜および Cu/ZrB₂(3-10nm)/SiO₂/Si 積層構造のキャラ クタリゼーションや熱処理に伴う構造の変 化等はオージェ電子分光(AES)、X線回折 (XRD)、X 線反射率測定(GIXR)、透過電子顕微 鏡(TEM)により調べた。

4. 研究成果

最初にガラス基板を用いて、基板温度を変 えることによって、得られる Zr-B 薄膜 (100nm)の XRD パターン (薄膜モード)を調 べた。結果を Fig.1 に示す。これより、ZrB₂ に相当する回折角 (20値) にごく微弱な回折 ピークが薄膜堆積時の基板温度(500℃まで) にはあまり依存せずに見られた。このことは、 得られた ZrB₂相がアモルファスに近いナノ 結晶相であること、およびその再結晶温度も 十分高いことを示唆している。これより、得 られた薄膜は、堆積温度にほとんど影響され ることない相安定性を有していると考えら れる。

次に、Si0₂/Si 基板に 400℃で堆積された Zr-B 膜(100nm)から得られた回折パターンの、 熱処理にともなう変化を調べた。その結果を Fig. 2 に示した。それによると、熱処理前の

Fig. 1 XRD paterns of Zr-B(100nm) films in thin film mode deposited on the glass substrate at various temperatures.

Fig. 2 XRD patterns of Zr-B(100nm)/Si02/Si specimens before and after annealing at various temperatures for 60 min.

回折パターンは、700℃までの熱処理に伴 い、回折強度が増加する傾向を示しており、 ZrB_2 相の再結晶化が起こっていると考えられ るが、その結晶性の変化は 700℃1 時間の熱 処理においても顕著ではない。この実験結果 は先に、Shappirio and Finnegan[4]および、 Sung ら[3]の報告とも整合性がある。彼らは、 ZrB_2 薄膜はアモルファスであり、700℃の熱処 理を行ってもアモルファスを維持し、熱的・ 構造的に安定であることが述べられている。 我々もこのような安定性を確認できた。

Fig. 3 には、熱酸化 SiO₂/Si、Si (100) ウエ ファ、Cu 薄膜を堆積した Cu/Ta/SiO₂/Si 基板 を用いて基板温度 400℃にて 100nm の Zr-B 膜 を堆積した試料から得られた XRD パターンを 示した。この中で、Cu 薄膜上に堆積された Zr-B 膜が比較的シャープな形状で強度の高 い回折ピークを示している。

次に、Si0₂/Si 基板上に室温で堆積した ZrB₂(100nm)膜の熱処理前および 500°C60 分 熱処理後の断面 TEM 像を観察し、Fig. 4(a)お よび Fig. 4(b)に示した。図には各々の制限視 野回折パターンも示してある。パターンから は微弱な回折リングといくつかの回折スポ

Fig. 3 XRD patterns of Zr-B(100nm) films deposited on various substrates at 400 °C.

Fig. 4 XTEM image of Zr-B(100nm)/Si02/Si specimens and electron diffraction patterns of the Zr-B films, (a)before and (b) after annealing at 500℃ for 60 min.

ットが見られる。熱処理前の TEM 像からは、 結晶粒径数 nm サイズのランダム配向のナノ

結晶組織が見られる。熱処理後には、幾分の 結晶粒成長が認められるが、極端な構造変化 はなく、Fig.2 に示した XRD の結果とも符合 している。TEM 像と回折パターンから熱処理 による結晶性の幾分の改善が認められる。 Si(110)回折パターンを基準として、得られ た Zr-B 膜からの回折スポットより d-値を求 めると、0.277、0.177、0.149 nm の値が得ら れ、これらは ZrB₂(100)、(002)、(102)の面 間隔とほぼ一致する。また、TEM 像より SiO₂ との界面において固相反応や相互拡散に起 因する界面層の形成は熱処理によらず見ら れていない。以上のことより、SiO2上に堆積 した Zr-B 膜はナノ結晶組織であり、その主 な相は ZrB, であって、組織は熱処理に対して も安定で、界面層の形成も見られないことが 結論づけられる。一方、Cu 薄膜上に堆積した Zr-B膜では、Fig.5に示すように膜厚方向に 揃ったファイバー組織となっているのが認 められる。Fig.3 で見られた、この試料から の比較的クリアな回折パターンは、この組織 の違いによるものと思われる。

Fig.5 XTEM image of Zr-B(300nm)/Cu film.

次に、AES 分析により膜の組成を調べた。 熱処理前および 500℃1 時間の熱処理後の Zr-B/Si0₂/Si 試料の深さ方向元素分布を得て、 Fig.6 に示した。図より、B/Zr の組成比は熱 処理によらず概ね 2 であるが、炭素、酸素、 窒素の含有が見られた。凡そ 12at.%の酸素が 最大の含有不純物元素であるが、分布濃度は 表面で高く、Si0₂界面で最小となっており、 炭素、窒素がほぼ膜中で平坦なのとは分布が

Fig. 6 AES depth profiles from Zr-B/Si02/Si specimen before and after annealing at 500°C for 60 min.

幾分異なっている。このことは、スパッタ中 にターゲット由来により混入した酸素と、大 気暴露したときに表面から混入した酸素の2 つの可能性が考えられるが、おそらく、2つ の過程ともに可能である。低温成長 CVD 薄膜 において B/Zr 比が2以上となることが報告 されているが、スパッタ製膜では低温におい てもそのような傾向は見られていない。

得られた Zr-B 膜の抵抗率を 4 端子法によ り測定した。Cu膜上に堆積したZr-B膜では、 Cu 膜との並列接続となることを考慮した補 正を行った後、14.7µΩcm の値を得た。この 値はバルク値である 4.6µΩcm[5]に近く、バ リヤとしての応用にも十分であり、不純物混 入に対しても抵抗率がさほど敏感でないこ とを示している。一方、SiO₂/Si 上に堆積し た Zr-B 膜では、膜厚に依存しない 440μΩcm の抵抗率の値が得られた。このように得られ た薄膜の抵抗率が下地基板に依存するとい う性質は興味深い事であるが、この違いが Figs.4,5 で見た下地基板の違いによる Zr-B 膜組織の違いによるものと結論づけるには いささか躊躇がある。しかしながら、下地基 板の違いにより抵抗値が違うという現象は、 Cu キャッピング膜としての応用に多いに期 待を持たせる。

Fig.7 XRD patterns of Cu/Zr-B(3nm)/Si02/Si specimen before and after annealing up to 850°C for 30min.

我々は次に、Zr-B 膜の極薄バリヤとしての 特性を調べるために、Cu/Zr-B(3nm)/SiO₂/Si のモデル積層構造を作製した。Fig.7 には熱 処理前後の試料から得られた XRD パターンを 示した。熱処理は真空中、種々の温度で 30 分行った。いずれのパターンからも、Cuから のシャープな回折線が見られるが、Zr-B 膜か らの回折線は膜の組織の特徴と膜が極めて 薄いことにより図では明瞭でない。700℃30 分熱処理後のパターンでは、Cu の粒径成長に よると思われる Cu 回折強度の増加が見られ るが、Zr-B 膜からの回折ピークに変化はなく、 熱的に安定な系を保持しているものと思わ れる。熱処理温度を 850℃に上げると、Fig. 7 挿入図に見られるような、Cu シリサイドに相 当する非常に微弱な回折線が現れる。これと ともに、Cu 回折線の強度の減少が確認される ことから、Zr-B バリヤをとおして Cu の拡散 と Si02 表面でのシリサイド反応が起こって いるものと推察される。一方、Sung ら[3]は リモートプラズマ CVD により作製した ZrB₂(20nm) 膜をCu(100nm)とSi 間のバリヤと して適用した系において、700℃30 分の熱処 理では見られなかった Cu₃Si の回折線が 750℃30 分の熱処理によって見られたことが 報告されている。本研究とは基板が Si と Si02 との違いはあるが、反応温度はSi02の方が高 くなるのが一般的である。これらの結果およ び、バリヤの膜厚が我々の研究において、 Sung らの 1/7 であることを考慮すれば、本実 験で適用した Zr-N バリヤは極薄バリヤとし て ITRS ロードマップにも叶う極めて優れた バリヤ特性を示しているものと結論できる。 さらに、我々は、Cu/Zr-B(3nm)/SiO₂/Siモ デル積層構造の形態をX線反射率測定(GIXR) により調べた。熱処理前の試料から得られた 測定結果を Fig. 8 に青い線にて示した。測定 結果は入射X線が積層構造の各界面で反射し、 それぞれが干渉を起こした結果としてのフ リンジが入射角の関数として現れている。こ のことは、積層構造の各界面が十分なめらか

である事を示している。積層構造に表面酸化 膜を仮定した Cu-0/Cu/Zr-B/Si0₂/Si をモデ ルとしてシミュレーションを行い、測定結果 にフィットするモデルを計算により求めた。 そのときのシミュレーションにより得られ た反射率曲線をFig.8 に示してある(赤い線)。 また、このフィッティングにより得られたモ デルの各層のパラメータはTable 1に示した。 これにより Zr-B 膜の厚さが~3nm であり、表 面あらさが~0.45nm なこと、各界面には界面 層が存在しないこと等がわかる。500°C30 分 熱処理を行った試料でも、測定結果およびシ ミュレーション結果に大きな相違はなく、積 層構造が熱的に安定であることがわかる。

Fig. 8 GIXR measured curve of Cu/Zr-B(3nm)/Si02/Si specimen before annealing(in blue), and calculated result(in red).

Table 1 Best-fit layer parameters derived from GDXR simulation for ${\rm Cu}_{\rm Z}{\rm rB}_{\rm S}/{\rm SiO}_{\rm S}/{\rm Si}$ specimen.

Model structure	Density (g/cm ³)	Thickness (nm)	Roughness (nm)
Cu-O	1.018	2.3	1.215
Cu	8.6	85	2.504
ZrB ₂	4.25	2.999	0.43
SIO ₂	2.25	103.772	0.218
Si	2.328	-	0.001

Fig.9 GIXR measured curve of Cu/Zr-B(3nm)/Si02/Si specimen after annealing at 700 $^{\circ}\mathrm{C}$ for 30 min.

一方、700℃30 分熱処理後の試料から得ら れた反射率曲線はFig.9に示すように回折に よるフリンジが消えている。このことは、 Zr-B バリヤの表面あらさが増えた、膜が不連 続になった等のなにがしかの構造的な変化 が生じていることを示唆している。これらの ことより、Zr-B 極薄膜を Cu への拡散バリヤ として用いた Cu/Zr-B(3nm)/Si0₂/Si 積層構 造は少なくとも 500℃30 分の熱処理において もその構造は安定であり、バリヤは均質で界 面での反応も認められないことが確認され た。

6. 結論

我々は Zr-B 薄膜を作製し、その特性を調 ベ以下の結論に達した。

- (1) Zr-B 焼結複合ターゲットを用いて Si0₂ 基板上に室温から 400℃の基板 温度でスパッタ成膜した Zr-B 薄膜は ナノ結晶組織を呈し、一方 Cu 薄膜上 に成膜した Zr-B 膜はファイバー組織 を呈することがわかり、この組織の 違いに起因すると思われる抵抗率の 違いが見られた。
- (2) 得られた Zr-B 膜を 3nm 厚さの Cu に 対する拡散バリヤとして適応した Cu/Zr-B(3nm)/Si0₂/Si モデル構造は 500℃30 分の熱処理を行っても安定 であり、その積層構造を保ち、界面 における顕著な拡散・反応等は見ら れなかった。これにより、Zr-B 膜は 極薄バリヤとしての優れた特性を有 していることがわかった。
- (3) Zr-B 膜の抵抗率の基板依存性はこの 材料のCu配線でのキャッピング膜と しての新たな利用に応用が可能であ り、新しい知見としても極めて有用 である。

References

[1] International Technology Roadmap for Semiconductors (ITRS), 2007 Edition.

[2] G.V. Samsonov, B.A. Kovenskaya, in: V.I. Matkovich(Ed.), Boron and Refractory Borides, Springer, Berlin, 1977.

[3] J. Sung, D. M. Goedde, G. S. Girolami,
J. R. Abelson, J. Appl. Phys. 91 (2002) 123.
[4] J. R. Shappirio, J. J. Finnegan, Thin Solid Films 107 (1983) 81.

[5] H. Kinoshita, S. Otani, W. Chen, H. Amano, I. Akasaka, J. Suda, H. Matsunami, Jpn. J. Appl. Phys. 40(2001)L1280.

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

① <u>M.B. Takeyama</u>, <u>A. Noya</u>, Y. Nakadai, S. Kambara, M. Hatanaka, Y. Hayasaka, E.

Aoyagi, H. Machida, K. Masu; Low temperature deposited Zr-B film applicable to extremely thin barrier for copper interconnect, Applied Surface Science, 256(2009)1222-1226. (査読有)

〔学会発表〕(計7件)

① <u>M.B. Takeyama</u>, Y. Nakadai, S. Kambara, M. Hatanaka, <u>A. Noya</u>; Application of ZrB_2 thin film as a diffusion barrier in Cu interconnects, Advanced Metallization Conference 2007, Tokyo (2007.10). (査読有)

② <u>武山真弓</u>、中台保夫、神原正三、畠中正 信、<u>野矢厚</u>; ZrB₂薄膜のキャラクタリゼーシ ョンと Cu/SiO₂間のバリヤ特性、電子情報通 信学会電子部品・材料研究会、信学技報 CPM-2007-111、長岡、(2007.11).

③ <u>M.B. Takeyama, A. Noya</u>, Y. Nakadai, S. Kambara, M. Hatanaka, E. Aoyagi, H. Machida, K. Masu; Low temperature deposited ZrB_2 thin film applicable to extremely thin barrier against copper interconnect, 40^{th} Vacuum and Surface Science Conference of Asia and Australia, Matsue (2008.10). (查読有)

 ④ 佐藤勝、木嶋雄介、宮地一成、<u>武山真弓</u>、 <u>野矢厚</u>; ZrBx 薄膜のキャラクタリゼーション、 電気・情報関係学会北海道支部連合大会、札
 幌、(2008.10)

⑤ <u>武山真弓</u>、宮地一成、木嶋雄介、佐藤勝、 <u>野矢厚</u>;低温作製された ZrBx 薄膜の特性評 価、44回応用物理学会北海道支部・第5回日 本光学会北海道支部合同学術講演会、函館、 (2009.01)

<u>⑥武山真弓</u>、佐藤勝、早坂祐一郎、青柳英二、 <u>野矢厚</u>; ZrBx 薄膜の特性評価と Cu 多層配線 への応用、電子情報通信学会電子部品・材料 研究会、CPM2009-43 (2009.08)

⑦ <u>武山真弓</u>、佐藤勝、<u>野矢厚</u>:低温作製さ れた ZrBx 薄膜の Cu 配線への適用、2010 春 季応用物理学会関係連合講演会、神奈川、 (2010.03)

〔図書〕(計0件) 〔産業財産権〕 ○出願状況(計0件) ○取得状況(計0件) 〔その他〕 ホームページ等(なし)

6.研究組織
(1)研究代表者 野矢 厚(NOYA ATSUSHI) 研究者番号:60133807
(2)研究分担者 武山 真弓(TAKEYAMA MAYUMI) 研究者番号:80236512
(3)連携研究者(なし)