科学研究費補助金研究成果報告書

平成21年 4月 日現在

研究種目:基盤研究(C)
研究期間:2007~2008
課題番号:19560350
研究課題名(和文) 多周波数帯伝搬導波管に関する研究
研究課題名(英文) Multi-Band Metallic Waveguide with Arrayed Dielectric Rods
研究代表者

小久保 吉裕(KOKUB0 YOSHIHIRO)
兵庫県立大学・大学院工学研究科・准教授
研究者番号:80264836

研究成果の概要:本研究は、マイクロ波・ミリ波で使用される金属導波管中に「周波数特性を 持った等価的な管壁」を最適設計し、単一モードでの広帯域化を図る。具体的には、管壁とし て周期配列の円柱棒を置いたときの特性を計算する。2列あるいは1列の場合のω-k特性を計 算し、広帯域化に有効であることを示す。また、直線部ではモード変換が起きないことから、 曲がり部のみに誘電体棒を配置する構造を提案した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	1, 900, 000	570, 000	2, 470, 000
2008年度	1, 500, 000	450, 000	1, 950, 000
年度			
年度			
総計	3, 400, 000	1, 020, 000	4, 420, 000

研究分野:工学

科研費の分科・細目:電気電子工学・電子デバイス・電子機器 キーワード:マイクロ波・ミリ波

1. 研究開始当初の背景

マイクロ波・ミリ波帯の低損失伝送ガイド として、金属導波管は代表的なものの一つで ある。しかし、欠点の一つとして方形導波管 の場合、カットオフ周波数をfcとすれば、帯 域がfc<f<2.fcに限られることが挙げられる。 f>2.fcになると高次モードが伝搬可能になる ため、少なくとも通信の用途には適さない。 従って、2.fcを越える幾つかの周波数帯を伝 搬させようとすると、複数の導波管を用いて 伝搬させる必要がある。広帯域と言う点では 金属リッジ導波管があるが、構造が複雑で高 い周波数帯には向いておらず、また、伝搬損 失も大きい。 2. 研究の目的

我々は、導波管において低い周波数帯では 管壁幅が広く、高い周波数帯では管壁を狭く 出来れば高次モードを発生させずに高い周 波数帯まで伝搬可能となるはずであると考 えた。すなわち、導波管の中に周波数特性を 持った等価的な管壁を設置する。この等価的 な管壁は低い周波数帯では電磁波の透過率 が高く、従って通常の導波管に近いモードで 伝搬する。f>2·f_cになる高い周波数帯では等 価的な管壁は、高い反射率を持ち、この幅の 狭い等価的な管壁で反射されるため高次モ ードが抑制されると言う仕組みである。我々 はこの等価的な管壁として、誘電体円柱の周 期配列を、金属導波管の E 面に平行に配置す る(図 1)ことで実現し、従来不可能であっ た $f > 2 \cdot f_c$ の周波数帯でも単一モードで伝搬 可能であることを計算で確かめた。

dielectric rods

図1 誘電体円柱を内部に周期配置した方 形導波管

本研究では、この構造を基本として、様々 な角度から特性を掴み、最適設計と実用化の 可能性、そして他の構造の可能性を探る。

3.研究の方法

(1) 実用的な設計の可能性

最初の発表では、誘電体として Trans-Tech 社 C8700 シリーズのセラミック ($\alpha = 28.5$ ~29.5)を仮定したが、価格が高い(1本約 10万円)ため、実用化の観点から安価なアル ミナ棒を用いた場合について可能かどうか 計算する。

(2) 効率的な配置

導波管の直線部ではモード変換は起きず、 曲がり部で起こることから、誘電体棒は曲が り部のみに必須であり、直線部では省略でき ると思われる。この構造について設計と計算 を行う。

(3) 他の周期構造による多数周波数帯の可能 性を探る

帯域が狭いのは、幾つかの固有値がオーバ ーラップするためで、これは誘電体棒の列を 減らすことで解決できるのではないかと考 えた。そこで次に、1 列の誘電体棒配列を導 波管に配置し、固有値を計算する。

(4) 電磁波導入の方法

導波管の広帯域化は図れても、導波管に電 磁波を導入するには、同軸ケーブルから行う のが普通である。しかし、同軸/導波管変換 器にはそのような広帯域のものが今のとこ ろ存在しない。そこで、それぞれの帯域で変 換するように、導波管で分波器/混合器が必 要になると考えられるため、設計を行う。

(5) 市販品の曲がり導波路の検討

誘電体配列は曲がりの部分にのみ必要で あると述べたが、設計上曲がり導波管上で90 度の曲がりに対して整数本の誘電体棒が等 間隔で並ぶようにしたため、導波管の曲がり の曲率半径は任意の値に選べなかった。しか し、それでは市販の導波管を使用することは できない。そこで、今年度は導波管の曲がり の曲率半径を固定した場合に、誘電体棒が直 線部に2本あれば良いことを計算で確かめ、 任意の曲率半径でも直線部では省略できる ことを計算で確かめる必要がある。

図 2 WR-90 導波管の中に &=29.5 で r=0.08a, または &=9 で r=0.2a の配置.

図3 εr=29.5 r/a=0.08 と εr=9 r/a=0.2.の場 合の導波管の軸に沿った ω-k 特性

誘電体として Trans-Tech 社 C8700 シリ ーズのセラミック ($\epsilon_r = 29.5$)を仮定すると、 価格が高い(1本約10万円)ため、実用化 の観点から安価なアルミナ棒を用いた場合 について単一モード広帯域化が可能かどう か計算した。図2は詳細な配置図で、10GHz 帯の導波管(WR-90)の内部に円形誘電体棒を 周期的に2列並べたものである。位置は同じ だが、 $\alpha = 29.5$ はr=0.08a、 $\alpha=9$ のときは r=0.2aと、半径のみ変えている。それらの伝 搬特性を計算した結果が図3である。計算は 固体物理で用いる逆格子の解析方法を用い、 FDTD(Finite Difference Time Domain)法 で計算した。やはり $\alpha = 29.5$ のときに比べる と $\alpha=9$ の特性は悪くなるが、一応の広帯域化 は図れることが分かった。

(2) 効率的な配置

導波管の直線部ではモード変換は起きず、 曲がり部で起こることから、誘電体棒は曲が り部のみに必須であり、直線部では省略でき ると思われる。90°曲がり導波管に誘電体円 柱を並べた配置を図4に示す。直線部には誘 電体棒が無いので不連続となり、反射が生じ る。太い2本の円柱棒は、反射を低減するも のでテフロン(α=2)を仮定している。この 構造についてSパラメータを計算した結果が 図5である。(図5では反射しか描いていな いが、損失を考えていないので残りは全て透 過となる。)反射の少ない帯域は広いとは言 えないが、直線部の誘電体棒は無くしても良 いことが分かった。

図 6 出口の直線部における TE₂₀/TE₁₀ モ ードの電力比

反射が少なくても、TE₂₀に変換されていた のでは意味が無い。そこで、出口の直線部に おける TE₂₀/TE₁₀ モードの電力比も計算し た。この結果を図6に示す。TE₂₀モードの電 力は小さく、モード変換は殆ど起きていない ことが分かった。

(3) 他の周期構造による多数周波数帯の可能 性を探る

帯域が狭いのは、幾つかの固有値がオーバ ーラップするためで、これは誘電体棒の列を 減らすことで解決できるのではないかと考 えた。そこで次に、1列の誘電体棒配列を導 波管の中央に配置し、固有値を計算した。

誘電体棒の配置を図7に示す。図8は、 εr=29.5, r=0.045*a*, a=9.956mmの場合の導波 管の軸方向のω-*k*特性である。

図7 誘電体棒を導波管の中央に1列配置 したもの

予想通り、第一バンドと第二バンドの固有 値の重なりがなくなり、帯域を広げることが できた。但し、第一バンドは TE₁₀-like の偶 モードであるが、第二バンドは TE₂₀-like の 奇モードであるため励振に若干難がある。ま た、第三バンドが第二バンドと重なって、帯 域を狭くしていると言う問題点があること

が明らかになった。

また、誘電体の誘電正接を 10⁻⁴として、減 衰定数を計算した結果が図 9 である。図にお いては通常の金属導波管 WR-90、金属リッジ 導波管 650D28 と減衰定数を比べている。

図 8 図 7 において、ε_r=29.5, *r* =0.045*a*, *a*=9.956mmの場合の導波管の軸方向の特性

図 9 図 7 において、ε=29.5, *r* =0.045*a*, *a*=9.956mmの場合の導波管の減衰定数。金属 リッジ導波管と比較している。

(4) 電磁波導入の方法

導波管の広帯域化は図れても、導波管に電 磁波を導入するには、同軸ケーブルから行う のが普通である。しかし、同軸/導波管変換 器にはそのような広帯域のものが今のとこ ろ存在しない。そこで、それぞれの帯域で変 換するように、導波管で分波器/混合器が必 要になると考えられるため、設計を行った。 これは、前年度に導波管の内部に2列の誘電 体を配置したものを基本構造とし、その配列 を電磁波を導きたい方向に曲げることで分 波器/混合器の設計を行った。

前述の C8700 シリーズは高価で、アルミ

ナは十分な特性が得られなかったため、誘電 率が大きくかつ安価な材料を探した。その結 果、LaAlO₃(Lanthanum Aluminate)が候補 に挙がった。LaAlO₃は、 ε r= 24 で、20mm 角の基板として容易に入手可能で、しかもそ れが1万円程度と安価である。(但し、加工 代は別である。)このLaAlO₃を想定して計算 を行った。

まず単一モード多周波数伝搬導波管の基本的な構造を LaAlO₃を用いた場合の計算を 行った。配置の詳細は図 10、計算結果を図 11 にそれぞれ示す。図3の &=29.5 の場合と 比べて、殆ど違いは無い。

図 10 図 7 における導波管のω-k特性

この基本的な構造を用いて周波数混合器 /分波器を作製するには、この2列の誘電体 周期配列のうち、1列についてその電磁波に 対する透過率を計算した。図 11 は、ε_r = 24 で r/a = 0.09の誘電体周期配列の0から60°ま での角度で入射した場合の透過率の計算値 である。 $\omega a/2\pi c \approx 0.2$ 付近では透過率が高く、 その約2倍の ωa/2πc ≈ 0.45 付近では透過率 が低い(反射率が高い)ことがわかる。そこ で図 13 のような周波数混合器/分波器を考 えた。分波器として動作させるとき、Port 1 から電磁波が入射したとして、低い周波数帯 は、誘電体棒の透過率が高いので、そのまま 直進して Port 2 に到達する。ここで、Port 3 はカットオフ条件になっている。また、Port 1から入った高い周波数は、誘電体棒の反射 率が高いので、Port3に導かれる。なお、太 い誘電体棒RodAは、誘電体棒と導波管の界 面での不連続のための反射を低減するため のもので、テフロンを仮定している。

図 12 周波数混合器/分波器。Rod A は反射 低減のための誘電体で、テフロンを仮定

図 13 図 12 の構造での S パラメータ

図 14 Port 3 から入力した場合の、Port 1 での TE₂₀/TE₁₀比

S パラメータの計算結果を図 13 に示す。 反射 S₁₁が-20dB となる帯域は広いとは言え ないが、この周波数帯で周波数混合器/分波 器の役割を果たすことが分かる。また、Port 3 から入力した場合の、Port 1 での TE₂₀/TE₁₀ 比を求めたものが図 14 である。TE₂₀ の電力 は非常に小さく、モード変換が起きないこと を示している。

(5) 誘電体棒を左右非対称に配置した導波管

導波管の中央に1列の配列の場合は、第一 バンドはTE10-likeの偶モード、第二バンド はTE20-likeの奇モードであるため励振に若 干難があるが、これを第一、第二バンド共に 左右非対称モードにすることで、いずれも TE10モードからのモード変換を容易にし、励 振を容易にできる可能性がある。もちろん誘 電体棒は曲がり部のみに設置する。

周期構造の基本的な配置を図 15 に示す。 円柱棒の周期配列は左右非対称で片方の管 壁に寄っており、1列である。このときのバ ンド図を図 16 に示す。第一バンドも第二バ ンドも、左右非対称で TE₁₀ モードからの変 換は、片方が有利でも不利でもない。この構 造を基本として、モード変換が起きる導波管 の曲がり部のところだけにこの構造を用い れば、単一モード広帯域化が図れると思われ る。90°曲がり導波管に適用した例を図 17 に示す。

図 17 90°曲がり導波管に適用した例

図 18 図 17 の構造での S パラメータ (反射率)

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計8件)

- ① <u>Y. Kokubo</u>, "Rectangular TE₃₀ to TE₁₀ Mode Converter", IEICE Transactions on Electronics, Vol.E92-C, 2009. 査読 有り(in press)
- ② <u>Y. Kokubo</u>, and T. Kawai, "90-Degree H-Plane Bent Waveguide Using Dielectric rods", Microwave and Optical Technology Letters, 2009. 査 読有り(in press)
- ③ 小久保 吉裕, "簡易 TE₁₀-TE₂₀ モード変換器",電子情報通信学会論文誌, Vol. J92-C, No. 1, pp. 32-33, 2009 年1月.

査読有り

- ④ <u>Y. Kokubo</u>, and T. Kawai, "Wide Band Metallic Waveguide with Asymmetric In-Line Dielectric Rods", IEICE Transactions on Electronics, Vol. E91-C, No. 12, pp. 1966-1968, Dec. 2008. 査 読有り
- <u>Y. Kokubo</u>, "Analysis of Propagation Loss of Metallic Photonic Crystal Waveguides", Microwave and Optical Technology Letters, Vol. 50, No. 11, pp. 2942-2945, Nov. 2008. 査読有り
- ⑥ <u>Y.Kokubo</u>, "Wide Band Metallic Waveguide with In-Line Dielectric Rods", IEEE Microwave and Wireless Components Letters, Vol. 18 No. 2, pp. 79-81, Feb. 2008. 査読有り
- ⑦ Y. Kokubo, S. Yoshida, and T. Kawai, "Economic Setup for a Dual-band Metallic Waveguide with Dual In-line Dielectric Rods", IEICE Transactions on Electronics, Vol.E90-C No.12, pp. 2261-2262, Dec. 2007. 査読有り
- ③ 小久保 吉裕,"曲がり部のみに誘電体円 柱を装荷した広帯域単一モード導波管", 電子情報通信学会論文誌 Vol. J90-C No. 9, pp. 642-643, 2007 年 9 月. 査読有り

〔学会発表〕(計4件)

- 小久保 吉裕, "誘電体円柱を用いた TE₁₀-TE₂₀ モード変換器",電子情報通信学会 技術報告, MW2008-139, pp.119-124, 2008 年 11 月 長崎大学.査読無し
- Y. Kokubo, D. Maki, and T. Kawai, "Dual-Band Metallic Waveguide with Low Dielectric Constant Material", 37th European Microwave Conference (EuMC2007) Proc., pp. 890-892, Oct. (2007) (October 8-12, Munich, Germany). 査読有り
- ③ Y. Kokubo and T. Kawai, "A Frequency Multiplexer/Demultiplexer for Dual Frequency Waveguide", 38th European Microwave Conference (EuMC2008) Proc., pp. 24-27, Oct. (2008) (October 27-31, Amsterdam, The Netherlands). 香読有り
- ④ 小久保 吉裕, "誘電体円柱を装荷した広帯域単一モード導波管", 電子情報通信学会技術報告, MW2007-55, pp. 75-79, 2007年8月 室蘭工業大学.査読無し

6. 研究組織

(1)研究代表者
 小久保 吉裕(KOKUBO YOSHIHIRO)
 兵庫県立大学・大学院工学研究科・准教授
 研究者番号:80264836