科学研究費補助金研究成果報告書

平成22年 5月10日現在

研究種目:基盤研究(C) 研究期間:2007~2009 課題番号:19592160

研究課題名(和文)側坐核のカテコラミン遊離制御機構の研究

研究課題名 (英文) Studies on the mechanisms of regulation of catecholamine release

in the nucleus accumbens

研究代表者

三枝 禎(SAIGUSA TADASHI) 日本大学・歯学部・専任講師 研究者番号:50277456

研究成果の概要(和文):口腔ジスキネジアは顎顔面の常同運動を特徴とする症候で、加齢以外にパーキンソン病治療薬または抗精神病薬の副作用として誘発される。口腔ジスキネジア発症機構の詳細は不明だが、側坐核や線条体へ投射する中枢ドパミン神経の機能亢進が顎の常同運動を惹起することが、ラットを用いた行動学的研究から示唆されている。そこで申請者らは、側坐核および線条体のドパミン神経亢進機構について、無麻酔非拘束ラットを用い in vivo 脳微小透析法により検討した。

研究成果の概要(英文): Oral dyskinesia is a neurological syndrome associated with aging or use of drugs for Parkinson's disease and antipsychotics. It is characterized by repetitive stereotyped oral movement. The detailed biological basis of the disorder remains unclear, but the pharmaco-behavioural studies suggest that enhance of dopamine function in the nucleus accumbens and striatum plays a pivotal role for the induction of repetitive jaw movements of rats. Therefore, in the present study, we investigated the mechanisms of increase in accumbal and striatal dopaminergic activity in freely moving rats, using the *in vivo* brain microdialysis technique.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	1, 500, 000	450, 000	1, 950, 000
2008 年度	1, 300, 000	390, 000	1, 690, 000
2009 年度	700, 000	210, 000	910, 000
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

研究分野:神経薬理学

科研費の分科・細目:歯学・機能系基礎歯科学

キーワード:カテコラミン、大脳基底核、口腔ジスキネジア、麻薬性鎮痛薬、鎮痛補助薬

1. 研究開始当初の背景

側坐核は、中脳腹側被蓋野に起始核をもつ中脳辺縁系ドパミン (DA) 神経の主たる投射部位である。また、側坐核は DA 神経のみならず青斑核などからのノルアドレナリン (NA) 神経の投射先のひとつでもある。

高齢者では舌の突出を伴う顎顔面の異常

な不随意運動の口腔ジスキネジアがしばしば見られる。口腔ジスキネジアは抗パーキンソン病薬の反復投与などの中枢 DA 神経活性化を狙った薬物療法の副作用としても起こることから、口腔ジスキネジア発症に関する研究は、この薬物の主たる作用部位と推測される大脳基底核へ投射する黒質-線条体系 DA

神経に焦点を当てて進められてきた。しかし、臨床上、黒質-線条体 DA 神経の機能障害によるパーキンソン病の治療のため脳内の DA 神経活性を高める薬物を投与すると、パーキンソン病症状が改善する以前に口腔ジスキネジアが発症することも知られている。このお果、口腔ジスキネジアが発症する可能性が考えられる。実際に申請者らのグループでは側坐核の DA 神経機能亢進がラットに口腔ジスキネジア様の顎運動を惹き起こすことを報告している(Cools et al., Eur J. Pharmacol., 1995)。

一方,麻薬性鎮痛薬は手術後疼痛や癌性疼 痛の緩和の目的で用いられているが、代表的 な麻薬性鎮痛薬のモルヒネの示す強い精神 依存の形成には中脳腹側被蓋野より側坐核 へ投射する中脳辺縁系 DA 神経機能の亢進が 関与するものと想定されている(Narita et al., Pharmacol. Ther., 2001)。これまで、この中脳 辺縁系 DA 神経の機能亢進には中脳腹側被蓋 野に分布するμ受容体の活性化の重要性が指 摘されていたが、側坐核に分布している μ 受 容体の活性化が同部位の DA 神経活動に及ぼ す効果は明らかでなかった。細胞外 DA 遊離 は DA 神経活動の直接的な指標のひとつであ るが、申請者らは μ 受容体アゴニストの側坐 核への局所灌流投与が同部位の細胞外 DA 量 に及ぼす効果について、ラットを用いて in vivo 脳微小透析法により検討を行ったところ, μ 受容体アゴニストのフェンタニルは,中脳 腹側被蓋野のみならず側坐核への直接灌流 投与でも側坐核における細胞外 DA 量を増加 することを明らかにしてきた(Yoshida et al., Neuroscience, 1999)。さらに申請者らは, μ受 容体の内因性アゴニスト候補物質のエンド モルフィン (EM) -1 も側坐核に灌流投与す ると同部位の細胞外 DA 量の増加を惹き起こ すことも報告してきた(Okutsu et al., Neuropsychopharmacol., 2006)。これらの報告 は、側坐核の µ 受容体刺激は同部位の DA 神 経活動を促進することを示唆するものであ る。

2. 研究の目的

実験動物を用いた基礎的な研究の結果に基づき、側坐核のDA神経の亢進は口腔ジスキネジア様の顎口腔領域の異常な不随意運動の誘因として、また、麻薬性鎮痛薬の依存性発現に関わることがそれぞれ想定されている。しかしながら、in vivo の条件下における側坐核のDA神経活動の亢進メカニズムの詳細は明らかでない。そこで本研究はラシの側坐核の細胞外DA遊離をDA神経活動の指標とし、in vivo における側坐核のDA神経活動促進機構を明らかにするため in vivo 脳微小透析法による検討を行った。

まず,側坐核の DA 神経への入力が想定さ れている GABA 神経による抑制性制御の抑 制(脱抑制)によるDA神経の活動亢進機構 について GABA 受容体サブタイプの面から 検討を加えた。μ 受容体刺激が惹起する DA 神経の亢進には GABA 神経の抑制が関わる ことが知られているので、つぎに、内因性 μ 受容体アゴニスト候補物質の EM 類の示す側 坐核 DA 遊離促進のメカニズムを同部位に分 布する GABA 受容体サブタイプの役割の面 から解明を試みた。また、側坐核 DA 神経制 御に関わることが指摘されていながら,それ 自体の制御機構の詳細が明らかでない側坐 核の NA 神経について、細胞外 NA 遊離調節 におけるアドレナリン受容体サブタイプの 役割の面から検討した。

一方,DA 受容体サブタイプの機能の検索に広く用いられているベンザゼピン系 D_1 受容体アゴニストの SKF38393 は,ラットの線条 体 背 側 部 へ 局 所 投 与 す る と,dexamphetamine と似たメカニズムで D_1 受容体を介さずに同部位の細胞外 DA 量を増加する(Tomiyama et al., 1995)。Dexamphetamine は,神経終末のシナプス小胞のみならず細胞質からの DA 遊離も惹起するが,このSKF38393 処置により誘発された DA の細胞内由来は明らかでない。そこで,このSKF38393 の線条体背側部への投与が誘発した同部位の DA 遊離が,シナプス小胞と細胞質のいずれを由来としているかについて検討を行った。

3. 研究の方法

- (1) ガイドカニューレの植立手術:実験には Sprague-Dawley 系雄性ラット(体重約 200 g)を用いた。ペントバルビタール(50 mg/kg i.p.)による全身麻酔を施したラットを脳定位固定装置に固定し、微小透析プローブ固定用ガイドカニューレをマニピュレーターで側坐核に植立した。
- (2) 脳微小透析実験:前述の小手術より 7~10日後,ラットが実験ケージ内を自由に動きまわれる条件下で脳微小透析実験を行った。まず、ラットを徒手で軽く保持して脳微小透析プローブをガイドカニューレに装売した。カットは $35\times35\times35$ (cm) のアクリルがった。カージ内に静かに収容し、脳微フェージのはりンゲル液をインプルを見りンポンプにより $1\sim2$ μ /分で灌流して、透続的に回収した。この分毎に注入し、電気化学は出た。または 20 分毎に注入し、電気化学出た。または 20 分毎に注入し、電気化学出た。

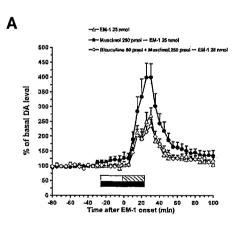
(3) 薬物の局所投与:脳微小透析プローブ 装着4時間以上が経過し,サンプル中のDA またはNA量が一定になったことを確認後, 薬物を灌流液に溶解し逆透析による側坐核 への局所灌流投与を行い,DAまたはNA の変化を4時間にわたり観察した。側坐を の変化を4時間にわたり観察した。側坐の はなく線条体背側部を対象とした一を は、薬物投与用の微小ニードルを がいこードルを介した薬物の線条体 では,薬物投与用の微小ニードルを の微小ニードルを介した薬物の 場所投与を行ってDA量の変化を3時間立 の 間がした。 脳微小透析実験終了後に作成した 置は,脳微小透析実験終了後に作成した と50 μmの脳の連続切片で確認した。

本研究プロジェクトにおけるすべての実験は,日本大学歯学部動物実験委員会の承認の下,動物実験指針に従って行い,実験動物の苦痛軽減および使用動物の低減に努めた。

4. 研究成果

(1) Endomorphin 類誘発側坐核 DA 遊離において GABA 受容体サブタイプが果たす役割に関する研究

すなわち、側坐核の基礎 DA 遊離と、EM-1 および EM-2 誘発 DA 遊離に対して、GABA_A 受容体系薬物(アゴニストの muscimol とアンタゴニストの bicuculline) および GABA_B 受容体系薬物 (アゴニストの baclofen とアンタゴニストの 2-hydroxysaclofen) の局所灌流投与の効果をそれぞれ検討した。

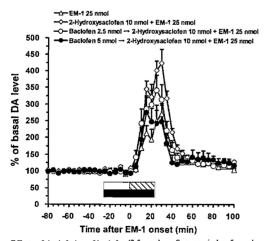

DA 遊離の測定には、側坐核に挿入した脳微小透析プローブを介して回収した細胞外液中の DA を、電気化学検出器を組み合わせた高速液体クロマトグラフにて分離定量した。薬物はいずれも灌流液中に溶解し、脳微小透析プローブを介した逆透析で側坐核に局所灌流投与した。

その結果、GABAA 受容体系薬物を用いた 研究より、

① GABA_A 受容体のアゴニスト (muscimol; 2,500 pmol) とアンタゴニスト (bicuculline; 5

- および 10 nmol)は,共に基礎 DA 遊離を増 大させた。
- ② Muscimol (2,500 pmol) 誘発 DA 遊離の増大は bicuculline (50 pmol) により拮抗されることが明らかとなった。
- ③ EM-1 誘発 DA 遊離は muscimol (250 pmol) により促進されたが、bicuculline (50 または500 pmol) による影響は受けなかった。
- ④ Muscimol (250 pmol) による EM-1 誘発 DA 遊離の促進は、bicuculline (50 pmol) の併用によって拮抗された(下図 A)。
- ⑤ Muscimol および bicuculline は、いずれも EM-2 (25 nmol) が誘発した DA 遊離に影響 を与えなかった。

Muscimol と bicuculline とが, いずれも基礎 DA 遊離を増大させたことから、これらの薬 物はそれぞれ異なる部位に作用した可能性 が考えられた。すなわち, muscimol は, DA 神経を抑制する GABA 性介在神経上の GABAA 受容体に作用して DA 神経活動を脱 抑制するのに対し、bicuculline は、DA 神経上 の GABA 受容体に直接作用して DA 神経に 対する抑制を解除することが示唆された。ま た, GABA 受容体のアゴニストは EM-1 の効 果を促進させたが、アンタゴニストではその ような効果は認められなかったことから、DA 神経終末に局在する GABAA 受容体に対する EM-1 の効果は限度近くに達しており、いわ ゆる床効果を誘発していた可能性が示され た (次頁図 B)。さらに、EM-2 (25 nmol) が 誘発した DA 遊離に対して muscimol と bicuculline は、いずれも著明な影響を与えな かったことから, EM-2 は EM-1 とは異なるメ カニズムで側坐核の DA 遊離を促進すること が示された。



Effects of the infusion of bicuculline (50 pmol) on the increase in accumbal dopamine (DA) efflux induced by the co-administration of 250 pmol muscimol and 25 mmol endomorphin-1 (EM-1; n=6, open diamonds). The data are expressed as the mean of change in 5 min observation periods after onset of endomorphin-1 infusion. Vertical bars indicate S.E.M. The filled bar above the abscissa indicates the period of bicuculline perfusion (50 min) that commenced 25 min before onset of endomorphin-1 infusion. The open bar indicates the period of infusion of muscimal (25 min) that commenced 25 min before onset of endomorphin-1 infusion: The hatched bar above the abscissa indicates the period of endomorphin-1 perfusion (25 min).

A model indicating how GABA-ergic interneuron and dopaminergic neuron (dopaminergic nerve ending) interact by mediating GABA_A as well as mu-opioid receptors in the nucleus accumbens. The glial cells which may contribute to the regulation of extracellular neurotransmitter levels are not included. The arrows are indicating the GABA and dopamine release from the nerve endings.

- 一方, GABA_B 受容体系薬物を用いた研究から以下の結果を得た。
- ⑥ GABA_B 受容体アンタゴニストの 2-hydroxysaclofen (100 および 500 nmol) が基礎 DA 遊離を増大した。
- ⑦ $GABA_B$ 受容体アゴニストの baclofen(2.5 および 5 nmol)は、基礎 DA 遊離に影響を与えなかった。
- ⑧ 基礎 DA 遊離に影響を与えない量の2-hydroxysaclofen (1 および 10 nmol) は, EM-1 (25 nmol) 誘発 DA 遊離を促進させた。
- ⑨ Baclofen (2.5 および 5 nmol) は、EM-1 (25 nmol) 誘発 DA 遊離には影響を与えなかったものの、2-hydroxysaclofen (1 および 10 nmol)による EM-1 (25 nmol) 誘発 DA 遊離の促進効果を抑制した(下図)。
- ⑩ 2-Hydroxysaclofen (10 nmol) および baclofen (5 nmol) は, いずれも EM-2 (25 nmol) が誘発した DA 遊離に影響を与えなかった。

Effects of the infusion of baclofen (2.5 nmol; n=8; open circles, 5 nmol; n=6; closed circles) on the increase in accumbal dopamine (DA) efflux induced by the co-administration of 10 nmol 2-bydroxysaclofen and 25 nmol endomorphin-1 (EM-1; n=5, open diamonds).

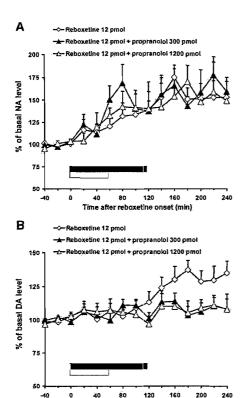
The data are expressed as the mean of change in 5 min observation periods after onset of endomorphin-1 infusion. Vertical bars indicate S.E.M. The filled bar above the abscissa indicates the period of 2-hydroxysaclofen perfusion (50 min) that commenced 25 min before onset of endomorphin-1 infusion. The open bar indicates the period of infusion of baclofen (25 min) that commenced 25 min before onset of endomorphin-1 infusion. The hatched bar above the abscissa indicates the period of endomorphin-1 perfusion (25 min).

これらの結果から、側坐核の GABA_B 受容体は基礎 DA 遊離および EM-1 誘発 DA 遊離の制御において抑制的な役割を果たすことが示唆された。また、2-hydroxysaclofen とbaclofen のいずれもが EM-2 (25 nmol) 誘発 DA 遊離に影響を与えなかったことから、GABA_B 受容体の関与についての本実験からも、EM-2 は EM-1 とは異なる機構で側坐核のDA 遊離を促進することが示された。

以上のGABA_A受容体系薬物およびGABA_B受容体系薬物を用いた研究の結果より, EM-1 は側坐核に灌流投与すると, DA 神経終末に存在するGABA_A受容体に対するGABA入力の著明な減少を介して, 同部位のDA遊離を誘発する可能性が示された。また, このEM-1誘発側坐核DA遊離の制御において, 側坐核のGABA_B受容体は抑制的な役割を果たすことが示唆された。さらに, 側坐核へのEM-2の灌流投与は, EM-1 の場合とは異なり, GABA受容体を介さずに同部位のDA遊離を増大させることが示唆された。

(2) Reboxetine 誘発側坐核 DA 遊離において β 受容体が果たす役割に関する研究

青斑核などからの NA 神経は、中脳辺縁系 DA 神経の投射する側坐核へ入力する。側坐 核の NA 神経と DA 神経との間には密接な機 能的相互関係があり、この領域に分布する β 受容体の作動薬による活性化は同部位の DA 遊離を増加する。一方、NA 取り込み阻害薬 は細胞外間隙において NA のみならず DA も 増加するが、その発現機構として NA 取り込 み機構を介した DA の細胞内移行の阻害の関 与が示唆されている。しかし、NA 取り込み 阻害薬の示す DA 遊離促進作用へ細胞外 NA 量の増加によるβ受容体の刺激が関わるか否 かについては明らかでない。そこで本研究で は, 選択的 β 受容体遮断薬の propranolol を用 いて、この薬物が選択的 NA 取り込み阻害薬 の reboxetine の示す側坐核の DA 遊離促進効 果を抑制するか否かについて検討した。


実験には無麻酔非拘束ラットを用い、側坐核から脳微小透析プローブを介して回収した細胞外液中のNAおよびDAはHPLC-ECD法で分離・定量した。薬物はいずれも灌流液中に溶解し、脳微小透析プローブを介した逆透析で側坐核に局所灌流投与した。

Propranolol は、側坐核のβ受容体の作動薬による活性化が誘発する同部位のDA遊離の 亢進を抑制する用量を用いた。

その結果,

- ① 側坐核の基礎NAおよびDA遊離はいずれ も, reboxetine (1.2, 12 pmol) の灌流投与に より増大した。
- ② Propranolol (300, 1200 pmol) の灌流投与

は、基礎 NA 遊離、基礎 DA 遊離、reboxetine 誘発 NA 遊離にはいずれも著明な影響を与え なかったが、reboxetine が誘発した DA 遊離の 増大を強く抑制した(下図 A, B)。

(A) Effects of a 60 min-infusion of J-propranolol [propranolo]; 300 pmol (n=9; closed triangles) and 1200 pmol [n=7; opened triangles)] on a 120 min-infusion of reboxetine (12 pmol)-induced increase in noradrenaline (NA) level in the nucleus accumbens (n=6; opened diamonds). The data are expressed as the mean change in 20 min observation periods after onset of a 120 min-infusion of reboxetine (12 pmol). Vertical bars indicate 5.E.M. The filled bar above the abscissa indicates the period of reboxetine perfusion, The opened bar indicates the period of infusion of 1-propranolol (B) Effects of a 60 min-infusion of 1-propranolol [propranolol] 300 pmol (n=9; closed triangles) and 1200 pmol (n=7; opened triangles)] on a 120 min-infusion of reboxetine (12 pmol)-induced increase in dopamine (DA) level in the nucleus accumbens (n=6; opened diamonds). The data are expressed as the mean change in 20 min observation periods after onset of a 120 min-infusion of reboxetine (12 pmol). Vertical bars indicates S.E.M. The filled bar above the abscissa indicates the period of reboxetine perfusion. The opened bar indicates the period of infusion of 1-propranolol.

以上の結果から reboxetine が誘発した側坐核の DA 遊離亢進には、同部位において増加した細胞外 NA による β 受容体の活性化が関わる可能性が示された。

(3)ベンザゼピン系 D_1 受容体アゴニストの SKF38393 の線条体背側部への局所投与が誘発する細胞外 DA 遊離の由来に関する研究

我々はシナプス小胞内 DA 枯渇薬の reserpine と DA 合成律速酵素阻害薬の α-methyl-p-tyrosine (α-MPT) を用いた研究から,覚醒アミンの dexamphetamine は,線条体の DA 神経終末のシナプス小胞のみならず細胞質からも DA を細胞外へ放出することを報告している(Watanabe et al., 2005)。ベンザゼピン系 D₁ 受容体アゴニストの SKF38393 はラ

ットの線条体背側部へ局所投与すると, dexamphetamine と類似した神経活動非依存 性の機構により同部位の DA の放出を促進す るが、この DA はシナプス小胞と細胞質のい ずれを由来とするかは明らかでない。そこで、 無麻酔非拘束ラットの線条体背側部への SKF38393 の局所投与が誘発した DA 放出に おけるシナプス小胞と細胞質の DA プールの 役割について, reserpine と α-MPT を用いて in vivo 脳微小透析法により検討した。その結果, ① Reserpine (5 mg/kg, 24 時間前) または α-MPT (250 mg/kg, 2 時間前) の全身投与の 結果,線条体背側部への SKF38393 の局所投 与(1.5 μg/0.5 μl)が誘発した同部位の DA 放 出は, reserpine により約 82%が, α-MPT によ り約 62 %がそれぞれ抑制され、これら reserpine と α-MPT の抑制効果の合計は 100% を超える約144%に達した(下表)。

② 細胞内 DA を枯渇させるため reserpine と α-MPT を併用投与しても, SKF38393 誘発 DA 放出は約 86%までしか抑制できなかった(下表)。

Summary of the dopamine efflux of baseline in the striatum (control) and SKF38393 (1.5 µg/0.5 µl) injected rats without or with pretreatment by reserpine (5 mg/kg i.p., 24 h before intrastriatal injection of the drug), alpha-methyl-para-tyrosine (250 mg/kg i.p., 2 h before intrastriatal injection of the drug) or both.

	Without pretreatment	With pretreatr Reserpine	Alpha-methyl-	Reserpine and Alpha-methyl- para-tyrosine
Control rats SKF38393- treated rats	5.0±0.36 (100%; n=25) 84.0±12.03 (100%; n=7)	0.8±0.20 (17.7%; n=7) 14.8±7.48 (17.6%; n=7)	2.1 ± 0.47 (44.7%; n=6) 32.3 ± 8.64 (38.5%; n=6)	0.4±0.10 (7.5%; n=5) 11.8±7.32 (14.0%; n=5)

The data were expressed as means \pm S.E.M. of dopamine level (pg)/20 min sample and corrected for the SKF38393-induced contamination, where appropriate.

以上の結果から、ラットの線条体背側部への SKF38393 の局所投与は、同部位のシナプス小胞と細胞質の両方から DA を放出することが示された。また、この SKF38393 処置は細胞内の DA のシナプス小胞と細胞質の間の移動を誘発すること、さらに細胞外 DA の細胞内への取込み機構を阻害することがそれぞれ示唆された。

5. 主な発表論文等

(研究代表者, 研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

- ① Saigusa T, Aono Y, Sekino R, Uchida T, Takada K, Oi Y, Koshikawa N, Cools A R. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393. Eur J Pharmacol, 2009, 624: 169-174. 查読有
- ② <u>三枝</u> 禎, 青野悠里, 越川憲明, 側坐核のドーパミン放出と GABA_A 受容体アゴニスト, アンタゴニスト. 生体の科学, 2009, 60: 420-421. (依頼原稿) 査読無
- ③ Mizoguchi N, <u>Saigusa T</u>, Aono Y, Sekino R, Takada K, Oi Y, Ueda K, Koshikawa N, Cools A R. The reboxetine-induced increase of accumbal dopamine efflux is inhibited by l-propranolol: a microdialysis study with freely moving rats. Eur J Pharmacol, 2008, 601: 94-98. 查読有
- ④ <u>Saigusa T</u>, Aono Y, Mizoguchi N, Iwakami T, Takada K, Oi Y, Ueda K, Koshikawa N, Cools A R. Role of GABA_B receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol, 2008, 581: 276-282. 查読有
- ⑤ Aono Y, Saigusa T, Mizoguchi N, Iwakami T, Takada K, Gionhaku N,Oi Y, Ueda K, Koshikawa N, Cools A R. Role of GABA_A receptors in the endomorphin-1-, but not endomorphin-2-, induced dopamine efflux in the nucleus accumbens of freely moving rats. Eur J Pharmacol, 2008, 580: 87-94. 查読有

〔学会発表〕(計7件)

- ① 関野麗子,青野悠里,三枝 禎,大井良之,越川憲明,Allylglycineのラット側坐核ドパミン遊離促進効果における GABA_B 受容体の役割. 2009 年 7 月 11 日,第 120 回日本薬理学会関東部会,東京医科歯科大学/5 号館講堂,東京都文京区
- ② 三枝 禎, 青野悠里, 関野麗子, ノルアドレナリン再取り込み阻害薬の示すラットの側坐核ドパミン遊離促進作用へ β 受容体拮抗薬が及ぼす効果. 2009 年 6 月 6-7 日, 第 1 回日本心身医学 5 学会合同集会第 24 回日本歯科心身医学会総会・学術大会, 東京国際フォーラム, 東京都千代田区
- ③ 関野麗子,青野悠里,三枝 禎,大井良之,越川憲明,ラットの allylglycine 誘発側坐核ドパミン遊離亢進における GABA_B 受容体の役割. 2009 年 5 月 16 日,第 61 回日本大学歯学会総会・学術大会,日本大学歯学部,東京都千代田区
- ④ 青野悠里, 三枝 禎, 関野麗子, Cools A. R., 越川憲明, ラットの側坐核における

- reboxetine 誘発ノルアドレナリンおよびドパミン遊離亢進へ 1-propranolol が及ぼす効果. 2009 年 3 月 16-18 日,第 82 回日本薬理学会年会,パシフィコ横浜,神奈川県横浜市
- ⑤ 青野悠里, 三枝 禎, 石毛久美子, 富山勝則, Rausch W-D, Waddington J. L., Cools A. R., 伊藤芳久, 越川憲明, ラットの側坐核ノルアドレナリン遊離制御における α 受容体の役割. 2007 年 3 月 17-19 日, 第 81 回日本薬理学会年会, パシフィコ横浜, 神奈川県横浜市
- 6 Mizoguchi N, Saigusa T, Aono Y, Iwakami T, Ueda K, Koshikawa N and Cools AR, Effects of a GABA_A receptor agonist and antagonist on the endomorphin-1- and endomorphin-2-induced dopamine efflux in the nucleus accumbens of freely moving rats. JULY 15th (12-17th) 2007, IBRO (International Brain Research Organization) world congress of Neuroscience 2007, Melbourne Australia
- ① Iwakami T, Saigusa T, Aono Y, Mizoguchi N, Ueda K, Koshikawa N and Cools AR, Effects of a GABA_B receptor antagonist and agonist on the endomorphin-1- and endomorphin-2-induced dopamine efflux in the nucleus accumbens of freely moving rats. JULY 15th (12-17th) 2007, IBRO (International Brain Research Organization) world congress of Neuroscience 2007, Melbourne Australia

〔その他〕

講演

of Saigusa T, Monitoring extracellular catecholamine levels in the dorsal striatum and the nucleus accumbens by in vivo microdialysis in freely moving rats in 25th RRC (BSI Research Resource Center) Educational Seminar "HPLC-Electrochemical Detection Microdialysis (Basic and Applied technologies)," Seminar, 2009年12月11日, RIKEN Brain Science Institute,埼玉県和光市 ホームページ等

研究内容の平易な紹介

http://www.nihon-u.ac.jp/community_and_service/publication/newsletter/nu_excellence/9-04.pdf

6. 研究組織

(1) 研究代表者

三枝 禎(SAIGUSA TADASHI) 日本大学・歯学部・専任講師 研究者番号:50277456

(2) 研究分担者

藤田 智史(FUJITA SATOSHI)

日本大学・歯学部・助教 研究者番号:00386096