科学研究費補助金研究成果報告書

平成21年5月27日現在

研究種目:若手研究(A) 研究期間:2007~2008 課題番号:19686024 研究課題名(和文) 320 Gbit/s-500 km 0TDM 伝送技術に関する研究 研究課題名(英文) Research on 320 Gbit/s-500 km 0TDM Transmission Technology

研究代表者

廣岡 俊彦(HIROOKA TOSHIHIKO)
東北大学・電気通信研究所・准教授
研究者番号:40344733

研究成果の概要:

本研究では 320 Gbit/s 光時分割多重 (OTDM) 信号の 500 km にわたる長距離伝送の基盤技術の 実現を目的として、高速化・長距離化に必要な基盤技術の研究開発に取り組んできた。160 Gbit/s 伝送技術の研究開発を通じて培われた技術的蓄積をもとに、サブピコ秒パルス光源、変 復調方式、伝送路および波形歪み補償技術、ならびにクロック抽出および超高速多重分離など の要素技術を実現した。これらを結集して 320 Gbit/s OTDM 伝送実験を行ない、525 km の長距 離伝送に世界で初めて成功した。さらに、OTDM 伝送のさらなる高速化を念頭に、640 Gbit/s OTDM 信号発生ならびに多重分離技術に関する基礎検討を行なった。320 Gbit/s 信号の多重分離に用 いた SMZ スイッチにおいて、制御光として用いる光パルスの幅を 720 fs まで狭くすることによ り、640 Gbit/s 多重分離のエラーフリー動作を初めて実証した。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	8, 500, 000	2, 550, 000	11, 050, 000
2008年度	5, 600, 000	1, 680, 000	7, 280, 000
年度			
年度			
年度			
総計	14, 100, 000	4, 230, 000	18, 330, 000

研究分野:工学

科研費の分科・細目:電気電子工学 通信・ネットワーク工学 キーワード:高速光伝送、光時分割多重、超短光パルス、フーリエ変換限界パルス、DPSK、 光多重分離

1. 研究開始当初の背景

ブロードバンド回線の急速な普及と多種 多様なアプリケーションによる帯域需要の 拡大に伴い、基幹伝送網の高速化に対する要 求が高まっている。波長多重(WDM: Wavelength Division Multiplexing)による ネットワークの大容量化が進む一方で、ノー ドにおける波長制御の容易さという点から 今後は1波長あたりの高速化が重要となる。 このため超短光パルスを光領域で時間多重 するのTDM (Optical Time Division Multiplexing)伝送技術が超高速光通信シス テムの実現に向けて精力的に研究されてい る。最近では160 Gbit/s OTDM伝送の現場実 験が日本・ヨーロッパから数多く報告され、 実用性の高い高速システムの実現に向けた 取り組みが国内外で積極的に進められてい る。このように160 Gbit/s OTDM 伝送の実用 化に向けた研究開発が着実に進展している 一方で、160 Gbit/s を上回る高速 OTDM 伝送 に関しては未だ十分な検討が行われていな い。このような高速システムを実際に国内の 基幹伝送系に適用するためには、少なくとも 東京・大阪間の距離に相当する 500 km 以上 の長距離伝送が必須である。しかし、このよ うな長距離化を視野に入れた超高速伝送技 術の実験的・理論的検討はこれまで十分にな されていなかった。

2. 研究の目的

160 Gbit/sを上回る高速伝送システムの実 現に向けて、本研究では40 Gbit/sの信号を 8時分割多重した320 Gbit/s OTDM 伝送を対 象とし、500 km にわたる長距離伝送の基盤技 術の実現を目的とする。160 Gbit/s 伝送技術 については実用化に向けた研究開発が精力 的に行なわれているが、本研究ではそこで培 われた技術的蓄積をもとに320 Gbit/sへの 高速化に必要な要素技術を開発し、それらを デバイス単体としてだけではなく、実際に 500 km 伝送実験系に組み込み、その詳細な性 能評価を実施する。

3. 研究の方法

320 Gbit/s への高速化ならびに 500 km へ の長距離化に必要な基盤技術として、光源技 術、変復調方式、伝送路および波形歪み補償 技術、ならびにクロック抽出および超高速多 重分離技術の研究開発に取り組む。さらにこ れらの要素技術を結集して 320 Gbit/s OTDM 伝送総合実験を行ない、各要素技術のデバイ ス性能を最大限に発現させるための条件を 抽出し、システム化への基盤を築く。

4. 研究成果

 (1) 320 Gbit/s OTDM 送受信系および 525 km 伝送路の構築

320 Gbit/s 伝送においては、隣接するビッ トの間隔が 3 ps と非常に狭いため、伝送に 用いる光パルスは 1 ps 以下のパルス幅が要 求される。そこで、従来のピコ秒モード同期 ファイバレーザを改良して FM モード同期を 用いることにより、繰り返し 40 GHz、パルス 幅 0.72 ps の超短光パルスを発生させ、この 信 号 を DPSK (Differential Phase Shift Keying)変調しさらに 8 倍に時間多重するこ とにより、320 Gbit/s DPSK 信号を発生させ た。レーザの構成、出力パルス波形、ならび に発生させた 320 Gbit/s OTDM-DPSK 信号の 波形を図 1 に示す。

受信部では、高速動作が可能な対称マッハ ツェンダー(SMZ: Symmetric Mach-Zehnder)

図1 40 GHz FM モード同期ファイバレーザ の構成(a), 出力パルスの自己相関波形 (b)、ならびに発生させた 320 Gbit/s OTDM-DPSK 信号波形

型半導体光スイッチによる OTDM 多重分離回 路を構築した。これにより光スイッチに用い る制御光パルスのパラメータを 320 Gbit/s 多重分離用に最適化することにより、消光比 の高い多重分離を実現した。これらの送受信 系を用いて Back-to-back 状態での符号誤り 率を測定した結果、-29 dBm の受光感度でエ ラーフリー動作を実現し、320 Gbit/s 送受信 の基本性能を実証した。

これと並行して、2次、3次の分散をほぼ 完全に補償する長距離分散マネージファイ バ伝送路を設計した。実際に320 Gbit/s信 号を伝送させパルス波形を詳細に評価した 結果、その伝送特性がファイバ伝送路の偏波 モード分散 (PMD: Polarization-Mode Dispersion)およびその時間変動に極めて敏 感であることが明らかになった。実際に構築 した525 km 伝送路の PMD の測定結果を図2 に示す。同図は2つの直交する偏波モード間 の群遅延差(DGD: Differential Group Delay) を 15 分間隔で 3 時間連続して測定したもの である。同図より、DGD は波長依存性を有し ており、さらに時間とともに変動しているこ とがわかる。320 Gbit/s OTDM 信号に用いる サブピコ秒パルスは信号帯域が大変広いこ とから、このことは 320 Gbit/s 長距離伝送 において、従来は問題とならなかった高次の PMD ならびにその時間変動が伝送性能の大き な劣化要因となることを示している。

(2) 320 Gbit/s-525 km OTDM 伝送実験

(1)で述べた 320 Gbit/s OTDM 送受信系な らびに分散マネージファイバ伝送路を組み 合わせて、525 kmの直線路伝送実験を行なっ た。(1)で述べたようにこのような超高速・ 長距離伝送においては伝送路の PMD が大きな 問題となることから、本実験では PMD の影響 を最小限に抑えるために、伝送後の信号の偏 光度 (DOP: Degree of Polarization)をモニ ターし、DOP の値が常に最大になるよう、伝 送路に入射する光信号の偏波状態を最適化 した。さらに、光位相変調と分散を用いた独 自の PMD 適応等化技術を導入した。伝送実験 結果を図 4 に示す。全てのチャネルの誤り率

図 4 320 Gbit/s-525 km 伝送結果(符号誤 り率特性)

を測定した結果、10⁻⁹の誤り率を 4~5.5 dB のパワーペナルティで実現することに成功 した。本成果は、単一偏波 320 Gbit/s 伝送 としては最長の伝送距離を実現したもので あり、所期の目標を達成した。

(3) 640 Gbit/s OTDM 信号の全光多重分離

本研究では、さらに新たな取り組みとして、 OTDM 伝送のさらなる高速化を念頭に、640 Gbit/s OTDM 信号発生ならびに多重分離技術 に関する基礎検討を行なった。

640 Gbit/s OTDM 信号の送受信系の構成を 図5に示す。送信部においては、まず40 GHz モード同期ファイバレーザから出力される パルス幅 1.6 ps のパルスを、正常分散を有 する高非線形分散フラットファイバと以上 分散ファイバを用いて 380 fs まで圧縮し、 40 Gbit/s で DPSK 変調した後、640 Gbit/s へ OTDM 多重化を行なっている。受信部では、 320 Gbit/s 信号の多重分離に用いた SMZ スイ ッチにおいて、制御光として用いる光パルス の幅を 720 fs まで狭くすることにより、640 Gbit/s から 40 Gbit/s への多重分離を行なっ ている。

図5 640 Gbit/s OTDM 信号の送受信系

発生させた 640 Gbit/s OTDM 信号および多 重分離後の 40 Gbit/s 信号の自己相関波形を 図 6 に示す。隣接パルスが僅かに残留してい るものの、15 dB 以上の高い消光比で多重分 離できていることがわかる。多重分離後の符 号誤り率測定結果を図 7 に示す。同図には全 ての OTDM チャネルに対して誤り率 10⁻⁹ とな る受光パワーを併せて示している。全てのチ ャネルに対して 40 Gbit/s Back-to-back 時 と 2~4 dB の差で多重分離を実現できている ことがわかる。将来展望として、この 640 Gbit/s 送受信系を用いた 300~500 km の超高 速長距離伝送の実現が期待される。

図7 640→40 Gbit/s 多重分離の符号誤り 率測定結果

- 5. 主な発表論文等
- 〔雑誌論文〕(計4件)
- [1] 中沢正隆, <u>廣岡俊彦</u>, "次世代光通信基 盤技術の展望," ケミカルエンジニヤ リング, vol. 54, pp. 51-57, 2009. 査 読無
- [2] 中沢正隆, <u>廣岡俊彦</u>, "モード同期ファ イバーレーザーと超高速光通信," 光 技術コンタクト, vol. 45, pp. 580-587, 2008. 査読無
- [3] T. Hirooka, M. Okazaki, P. Guan, and "320-Gb/s M. Nakazawa, single-polarization DPSK transmission over 525 km using time-domain optical Fourier transformation," IEEE Photonics vol. Technology Letters, 20 1872-1874, 2008. 査読有
- [4] <u>T. Hirooka</u>, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, "Stimulated Brillouin scattering in ultrahigh-speed in-phase RZ and CS-RZ OTDM transmission," IEEE Photonics Technology Letters, vol. 20, pp. 1694-1696, 2008. 査読有

〔学会発表〕(計5件)

- 岡崎勝伝、関鵬宇、平野敏行、<u>廣岡俊彦</u>、中沢正隆、中村滋、"超高速半導体SMZ スイッチによる全光 640 Gbit/s 0TDM信 号の多重分離,"2009 年電子情報通信学 会総合大会,2009 年 3 月 19 日,松山.
- [2] <u>T. Hirooka</u>, M. Okazaki, P. Guan, and M. Nakazawa, "320 Gbit/s single-polarization DPSK transmission over 525km using time-domain optical Fourier transformation," ECOC 2008, 2008 年 9月24日, Brussels, Belgium.
- [3] <u>T. Hirooka</u>, K. Osawa, M. Okazaki, M. Nakazawa, and H. Murai, "Observation of stimulated Brillouin scattering in ultrahigh-speed in-phase and carrier-suppressed RZ OTDM transmission," ECOC 2007, 2007 年 9 月 19 日, Berlin, Germany.
- [4] <u>廣岡俊彦</u>,大澤耕,岡崎勝伝,中沢正隆, 村井仁, "超高速RZおよびCS-RZ光伝送 における誘導ブリルアン散乱の観測," 2007 年電子情報通信学会ソサイエティ 大会,2007 年9月10日,鳥取.
- [5] <u>T. Hirooka</u> and M. Nakazawa, "Ultrahigh-speed signal transmission / processing technologies," OECC 2007, 2007 年 7 月 10 日, 横浜

〔その他〕 ホームページ等 http://www.nakazawa.riec.tohoku.ac.jp

 6.研究組織
(1)研究代表者 廣岡 俊彦(HIROOKA TOSHIHIKO)
東北大学・電気通信研究所・准教授
研究者番号:40344733