科学研究費補助金研究成果報告書

平成 21 年 5 月 22 日現在

研究種目:若手研究(B) 研究期間:2007~2008

課題番号:19760094

研究課題名 (和文) ナノダイヤによるトライボファブリケーション技術に関する研究

研究課題名(英文) Study on Tribo-fabrication Technique by Nano Diamond

研究代表者

加藤 照子 (KATO TERUKO)

独立行政法人理化学研究所・大森素形材工学研究室・協力研究員

研究者番号:50312260

研究成果の概要:ナノダイヤ(ND)の加工及び研磨の可能性をトライボファブリケーションの観点から明らかにした. すなわち,まず,濃度を幅広く変化させて,金属に対するNDのトライボロジー特性を明らかにし,その結果から,幅広い濃度(製造条件)におけるNDの加工能力を表す知見を導き出した.その上で,銅に対し,ナノレベルの研磨を行った.また,Si系セラミックスに対しては,NDのインプロセスコーティング作用があることが明らかとなった.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	2, 800, 000	0	2, 800, 000
2008 年度	500, 000	150, 000	650,000
年度			
年度			
年度			
総計	3, 300, 000	150, 000	3, 450, 000

研究分野:工学

科研費の分科・細目:機械工学・生産工学・加工学

キーワード:ナノダイヤモンド、トライボファブリケーション、トライボロジー、研磨加工

1. 研究開始当初の背景

爆ごう法による従来のナノダイヤモンドは、一次粒子径こそ 5nm であるが、100-200nm の非常に強固な凝集体であるために、ナノ炭素材料としての性能を発揮できなかった.しかし、近年では、大澤らにより、クラスターダイヤに分散媒を入れ、高速攪拌ビーズミーリングで解砕することで、NDの一次粒子化が初めて可能となった.現在は、複合材料、潤滑剤、超精密加工用研磨砥粒、圧着超多結晶体等の汎用工業材料として、用途が幅広く期待されている.一方、「トライボファブリケーション」とは、摩擦・摩耗・潤滑

ある. まさに「トライボファブリケーション」という言葉は、この表裏一体の関係を的確に表しているといえる.

2. 研究の目的

本研究では、研磨砥粒としてのNDの可能性をトライボファブリケーションの観点から明らかにする。すなわち、まず、濃度を幅広く変化させて、金属に対するNDのトライボロジー特性を明らかにし、その結果から、幅広い濃度(製造条件)におけるNDの加工能力を表す知見を導き出す。その上で、銅に対し、ナノレベルの研磨を行うことを本研究の目的とする。

3. 研究の方法

3. 1摩擦試験方法

Table1 に、摩耗試験条件を示す。摩擦材料には、黄銅ボールと#1200 の研削仕上げが施された微粒子超硬を使用した。そして、4種類の荷重条件下において、すべり速度を5mm/s とし、摩擦繰り返し数を1000回、NDの濃度を0.001 から5wt%まで変化させた。NDはナノ粒子であり、凝集しやすい特徴を有するため、原液を超音波分散器(Hielsher社製、UP-200H)を用いて分散処理を施した後、純水で希釈し使用した。また、NDの粒度分布を動的光散乱(DLS)法により測定した。なお、比較として純水潤滑下においても実験を行った。

Table 1 Wear test condition

Ball specimen	Brass (Radius: 3 mm, R _y :0.6μm, Density: 8.5g/cm ³)	
Disk specimen	Cemented Carbide (#1200 ground by ELID, R _v :0.1202μm)	
Load	2.45, 4.9, 9.8, 14.7 N	
Speed	5 mm/s	
Stroke	5 mm	
Number of repeat cycle N	1000	
Lubricant	Pure water, ND (0.001, 0.005, 0.01, 0.1, 0.5, 1.0, 5.0 wt%)	

3.2 研磨試験方法

超精密加工機ULGにより切削加工を施した 黄銅ピン(ϕ 10mm, R_g :35.0nm)の研磨試験を行った. Table2 に研磨試験条件を示す. 荷重 0.49Nにおいて, 研磨速度を 0.2m/sとし研磨 試験を行った. NDは分散処理を施した後, 純水で希釈し使用した. なお, 比較として純 水潤滑下においても研磨試験を行った.

Table 2 Polishing condition

Work	Brass (φ10 mm, R _y :35.0nm)
Polishing pad	Polyurethane
Load	0.49 N
Polishing speed	0.2m/s
Polishing time	60min, 120min
Colloid solution	Pure water, ND (0.001, 0.005, 0.01 wt%)

4. 研究成果

(1) DLS 法による粒度分布測定の再現性は, 1.5~2wt%の範囲で最も高く, 第一分布の平均は, 5.4±0.7nm (98.1wt%) を示す (Figure 1).

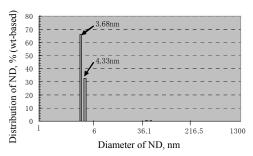
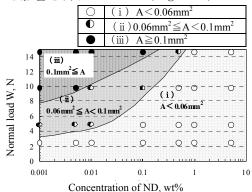



Figure 1 Example of typical DLS particles size distribution of ND

(2)軟質材料(黄銅ボール)と硬質材料(超硬ディスク)との摩耗試験を行うことにより,NDの濃度と荷重が両摩擦材料の摩耗に与える影響を明らかにした(Figure 2).

(a)Transition of wear area of ball according to an increase of concentration of ND and normal load

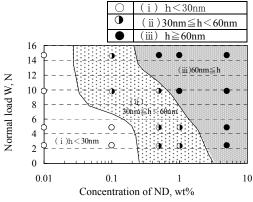


Figure 2 (b) Transition of wear depth of disk according to an increase of concentration of ND and normal load

(3) ND濃度と黄銅ボールとの摩擦係数の関係は、Figure 3 に示すように、ND濃度の増加に伴い減少する.

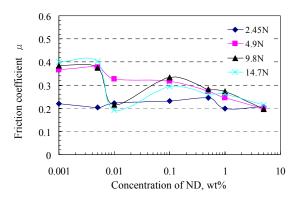


Figure 3 Relation between Concentration of ND and friction coefficient

(4)摩擦試験において、摩擦終了時の接触圧力から、NDの加工能力を表す図を作成した. Figure 4に摩擦終了時の接触圧力と摩耗深さの関係を示す. Figure 5に黄銅ボールに対するNDの表面粗さ低減効果を示す. Figure 4,5の結果より、ND濃度 0.01wt%以下を研磨試験の好適濃度とした.

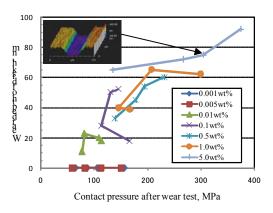


Figure 4 Relation between contact pressure after wear test and wear depth of disk

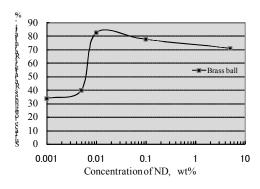


Figure 5 Relation between concentration of ND and surface roughness

(5) N D濃度 0.01 wt% \sim 0.001wt%で黄銅の研磨加工試験を行った結果, 0.005wt%N D 潤滑下では表面粗さ Ra を 4.41nm まで低減できることが明らかとなった(Figure 6,7).

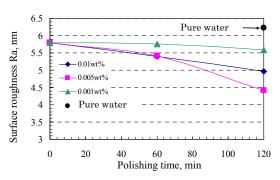
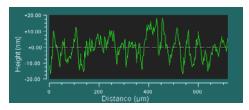
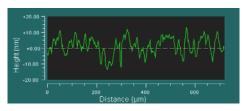




Figure 6 Relation between polishing time and surface roughness

(a) Initial surface

(b) 0.005wt%

Figure 7 Surface roughness

(6) N D の潤滑特性をさらに検討した結果, N D 濃度 0.01 wt% \sim 4.9wt%の時,初期なじ み性に優れ,Si系セラミックス(Si $_{3}$ N $_{4}$)との 摩擦において, μ = $0.05\sim$ 0.07を示し,純水中の 1/10 に減少することが明らかとなった (Figure 8).

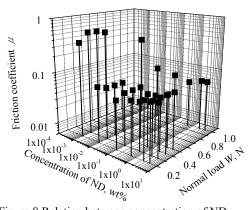


Figure 8 Relation between concentration of ND, Normal load and friction coefficient

(7) Si 系セラミックスに対し, ND 潤滑の摩擦係数の滑出しは高いものの, 摩擦に伴に減少する. 摩耗痕には, EPMA 分析から C が検出されたことから, ND によるインプイロセスコーティング作用が明らかとなった (Figure 9, 10).

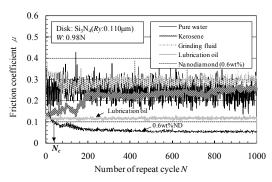


Figure 9 Change of the friction coefficient in various lubrication conditions at the load of 0.98N

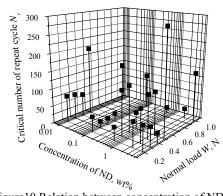


Figure 10 Relation between concentration of ND, normal load and critical number of Nc

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計6件)

- 加藤照子, 林偉民, 大森整, 大澤映二, 一桁 ナノダイヤモンドの粒度分布と工学的応用へ, 第21回理研シンポジウム「マイクロファブリ ケーションの最新動向」テキスト, 18-22, (2007) 査読無
- ② 加藤照子, ナノダイヤモンドコロイドの潤滑 特性と工学的応用, 第10回「トライボコーティングの現状と将来」シンポジウム予稿集, 15-23, (2008) 査読無
- ③ <u>加藤照子</u>, 大森整, 林偉民, 大澤映二, 一桁 単分散ナノダイヤ水性コロイドの潤滑特性, トライボロジスト, 54 巻, 2 号, 122-129, (2009) 査読有
- ④ 林偉民,<u>加藤照子</u>,大森整,大澤映二,ナノ ダイヤモンドコロイドによる研磨加工におけ

- るトライボファブリケーションの研究, 砥粒 加工学会誌, 52 巻, 8 号, 439-443, (2008) 査読無
- ⑤ W.M.LIN, <u>T.KATO</u>, H.OHMORI, E.OSAWA, Study on Tribo-Fabrication in Polishing by Nano Diamond Colloid, Key Engineering Materials, Vol. 404, 131-136, (2009) 査読無
- ⑥ 加藤照子, 一桁ナノダイヤモンドによるセラミックスの潤滑, 機能材料, vol. 29, No. 6, 35-42, (2009) 査読無

〔学会発表〕(計4件)

- ① 加藤照子, 井上浩利, 林偉民, 大森整, 根本昭彦, 大澤映二, ナノダイヤによるトライボファブリケーション技術に関する基礎研究, 2007 年度砥粒加工学会学術講演会, 2007 年9月5日, 東京工業大学
- ② 加藤照子, ナノダイヤモンドの特性と開発動向について, 第21回理研シンポジウム「マイクロファブリケーションの最新動向」,2007年10月23日,(独)理化学研究所
- ③ <u>加藤照子</u>, ナノダイヤモンドコロイドの潤滑 特性と工学的応用, 第10回「トライボコーティンの現状と将来」シンポジウム, 2008年2 月29日, (独) 理化学研究所
- ④ 加藤照子, 大森整, 伊藤伸英, 増田和弘, 塚越広光, 長谷川勇治, 根本昭彦, 松澤隆, ELID 研削用ツール開発におけるトライボファブリケーションに関する研究, 2009 年度精密工学会春季大会学術講演会, 2009 年 3 月 12 日, 中央大学

6. 研究組織

(1)研究代表者

加藤 照子 (KATO TERUKO)

独立行政法人理化学研究所・大森素形材工 学研究室・協力研究員

研究者番号:50312260

(2)研究協力者

大森 整 (OHMORI HITOSHI)

独立行政法人理化学研究所・大森素形材工学 研究室・主任研究員

研究者番号:50233276

林 偉民 (LIN WEIMIN)

秋田県立大学・システム科学技術学部機械知 能システム学科・准教授

研究者番号:60321840

伊藤 伸英 (ITOH NOBUHIDE)

茨城大学・工学部機械工学科・講師

研究者番号:70203156

大澤 映二 (OSAWA EIJI)