## 科学研究費補助金研究成果報告書

平成 21 年 3 月 31 日現在

研究種目:若手研究(B) 研究期間: 2007 ~ 2008

課題番号: 19790042

研究課題名(和文) 化学物質の腎毒性発現に関与する生体内レドックス変化の非侵襲的測定

法の確立

研究課題名 (英文) Establishment of noninvasive measuring method of *in vivo* redox

condition involved in nephrotoxic action of chemical agent.

研究代表者

岡崎 祥子 (OKAZAKI SHOKO) 崇城大学・薬学部・助教

研究者番号: 40435152

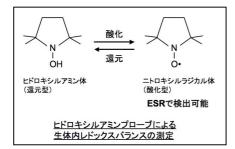
研究成果の概要:高血圧モデルマウスや敗血症モデルマウスを作成し、in vivo ESR 法を用いた非侵襲的な方法でこれらモデルマウスの体内が健常マウスに比べて酸化に傾いていることを示した。グルタチオン抱合ハイドロキノンを投与した腎障害モデルラットの腎臓における局所的な測定法の確立を試みた。

#### 交付額

(金額単位:円)

|         | 直接経費        | 間接経費     | 合 計         |
|---------|-------------|----------|-------------|
| 2007 年度 | 2, 000, 000 | 0        | 2, 000, 000 |
| 2008 年度 | 900, 000    | 270, 000 | 1, 170, 000 |
| 年度      |             |          |             |
| 年度      |             |          |             |
| 年度      |             |          |             |
| 総計      | 2, 900, 000 | 270, 000 | 3, 170, 000 |

研究分野:医歯薬学


科研費の分科・細目:薬学・物理系薬学

キーワード:レドックス、in vivo ESR、酸化ストレス

#### 1. 研究開始当初の背景

近年の研究から、医薬品や工業製品に含まれる様々な化学物質による障害において活性酸素の関与が示されて来ている。これら化学物質による障害の予防や治療のためには、生きている動物において化学物質と活性酸素との関係を明確にし、活性酸素の発生を非侵襲的に解析することが求められる。

活性酸素はその不安定さからそれ自身を 直接測定することが非常に難しく、動物から 採取した組織の脂質過酸化や塩基修飾など のいわば"痕跡"を調べる方法が常用されて きた。しかし、痕跡だけで酸化ストレスと障 害の関係を断定することは困難である。そこで、生きた動物における生体内の酸化還元状態(レドックス)の変化を、ニトロキシルラジカルのレドックス反応(下図)を利用して、リアルタイムで測定する方法(in vivo ESR)の開発が試みられている。プローブのレドックスの平衡関係は活性酸素種や分子状酸素により酸化方向へ、あるいは抗酸化物質や環元酵素により還元方向へシフトする。すなわち、プローブのもつレドックスポテンシャルは生体内のレドックスポテンシャルは生体内のレドックスポテンシャルときわめて近いと考えられている。



様々な産業において抗酸化剤として使われ、タバコの煙にも高濃度に含まれているハイドロキノン(HQ)はベンゼンの代謝物としても知られており、腎障害を引き起こす。HQは自動酸化の過程においてスーパーオキサイドを生じるが、HQのGSH抱合体(HQ-GSH抱合体)はHQそのものよりも活性酸素を発生しやすいことがわかっており(Nishizawa et al. Free Radical Research, 40, 233-240, 2006)、HQ-GSH抱合体の活性酸素の発生も毒性メカニズムに関わることが考えられる。In vivo ESR による生体内レドックス測定法の確立により、このような腎障害と腎臓におけるレドックス変化との関係を明確に解析することが可能になると考えられる。

#### 2. 研究の目的

病態とレドックス変化の関係を解明し病態予測等へ応用するため、*in vivo* ESR 法を用いた生体内レドックス測定法を確立する。

- (1) 腎臓での局所的な測定に先立ち、敗血症や高血圧等の腎障害を含む全身的疾患において *in vivo* ESR 法によるレドックス測定系を確立する。
- (2) HQ-GSH 抱合体による腎障害において腎臓での局所的なレドックス測定法を確立する。

#### 3. 研究の方法

(1)アシル保護ニトロキシルアミンプロー ブ

1-acetoxy-3-carbamoy1-2, 2, 5, 5-tetrameth yl pyrrolidine (ACP)の合成

3-carbamoy1-PROXYLをヒドラジンにより 還元しニトロキシルアミン体とした。無水酢酸との反応によりエステル化させた後にシ リカゲルクロマトグラフィー(クロロホルム:メタノール = 8:1)で分離精製した。

(2)グルタチオン抱合ハイドロキノンの合 成

ベンゾキノンと還元型グルタチオンを室温で2時間反応させた後、HPLC (カラム: Whatman PARTISIL 10 ODS-3、移動相:94%水5%メタノール1%酢酸)により3置換体(TGHQ)を分離精製した。凍結乾燥後再度

HPLC により精製を確認した。

## (3) モデルマウスの作成

各モデル作成に使用した動物は購入後実験に供するまで温度、湿度の管理された飼育室で飼育した。

①高血圧モデルマウス作成

マウス (C57BL/6N、雄、6 週齢) に浸透圧ポンプを用いて 1.4 mg/g-b.w./day の  $[\text{Val}^5]$ -AngII を 6 日間皮下投与し、高血圧モデルマウスを作成した。対照群には溶媒

(0.9%NaCl, 0.01M CH<sub>3</sub>COOH) を同様の方法で6日間投与した。

## ②敗血症モデルマウス作成

マウス (ddY、雄、4週齢) 腹腔内に生理食塩水に溶解させたリポポリサッカライドを体重(g) あたり 0.15mg 投与し、4時間後を敗血症モデルマウスとした。対照群には未処理マウスを用いた。

③HQ-GSH 抱合体毒性モデル

ラット (S.D.、雄、4週齢) の静脈内に PBS に溶解した TGHQ を  $7.5 \mu$ mol/kg-b. w. で投与した。 PBS を投与したラットを対照群とした。

#### (4) L-band ESR の測定

マウスに 140 mM ACP 100 µL を静脈内に投与し、ESR シグナルを経時的に測定した。マウス whole body における測定の場合にはループ・ギャップ型共振器を使用した。局所的測定では、ラットの右背部の一部を切開し、右腎のみ体外に露出させ、腎表面にサーフェイスコイル型共振器をあてて測定した。

## (5) x-band ESR 測定

マウスに 140 mM ACP 100 μL を静脈内に投与した。4分又は 14分、39分後に肝臓を摘出するとともに採血を行った。肝臓は生理食塩水で洗浄後にホモジナイズした。肝ホモジネートと血液それぞれに 2 mM フェリシアン化カリウムを加えて一電子酸化を行い、それぞれに含まれる総プローブ(還元型+酸化型)濃度を測定した

(6) 血清尿素窒素 (BUN), 血清クレアチニンの測定

マウス心臓より採血を行い、BUN 又はクレアチニンの測定を行った。測定はそれぞれ Wako 社の測定キットに従い行った。

### 4. 研究成果

(1) 高血圧モデルマウスにおけるレドック スバランス測定

マウスに AngII を投与し、高血圧モデルマウスを得た (対照群マウス (n=9) 血圧:92.4±7.1 mmHg、高血圧モデルマウス (n=10) 血圧:127.2±7.7 mmHg)。対照群及び高血圧モデルマウスに ACP を静脈内投与し、生体内レドッ

クスの測定を試みた。ACP は、投与 10 分後までに加水分解されてヒドロキシルアミン体となり、全身に分布し、一部 3-carbamoyl-PROXYLへと酸化されることがわかっている(Saito et al. Free radic. Biol. Med. 36:517-525, 2004)。ACP 投与数十秒後から 3-carbamoyl-PROXYLの ESR シグナルが増加し、約 10 分後にシグナルは減衰に転じた。投与 10 分以降 40 分までのシグナル強度変化から求めたシグナルの減衰速度定数は高血圧モデルマウスにおいて有意に低下した(図 1)。また、両群の BUN を比較したところ、高血圧モデルマウスで有意に増加しており、本病態モデルが腎障害を伴うことが示唆された(図 2)。

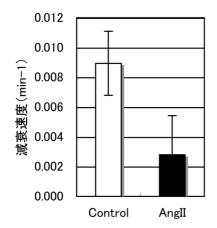



図 1 高血圧モデルマウスにおけるシ グナル減衰速度

ACP を投与後 whole body での ESR シグナル強度変化より算出した。n=13、p<0.001

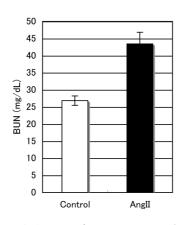



図 2 高血圧モデルマウスと健常マウスの BUN の比較 n=4、p<0.001

高血圧モデル群におけるシグナル減衰の 速度定数の低下と体内レドックスバランス 変化との関連を探るために抗酸化剤投与の 影響を検討した(図3)。スーパーオキシドジ スムターゼ(SOD)は半減期が短いためポリ エチレングリコール結合 SOD (PEG-SOD) を用いた。ACP の投与前に PEG-SOD とカタラーゼを静脈内投与してもシグナルの減衰速度定数に影響しなかったが、Tiron の静脈内投与では部分的に減衰速度定数が回復した。また、鉄のキレート剤であるデフェロキサミン(DFO) を Ang II 投与開始日より連続投与するとシグナルの減衰速度定数の低下が抑えられた。

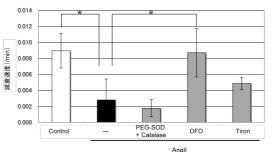



図 3 高血圧モデルマウスにおけるシグナ ル減衰速度低下に及ぼす抗酸化剤の影響 control、AngII(-): n=13

PEG-SOD+Catalase: 1 U/g-b.w. PEG-SOD,

75 U/g-b.w. catalase, n=3, i.v.

DFO: 6 μg/g-b.w. deferoxamine n=7、s.c.

(AngII 投与開始日より毎日投与) Tiron: 1 mg/g·b.w. Tiron、n=3、i.v. \*p<0.001

これらの結果から、本モデルにおける酸化型プローブのシグナルの持続は少なくとも血中のスーパーオキサイドによるものではないことが判明した。また、AngII 投与により組織に鉄が沈着することが報告されており、本モデルでは鉄がレドックスバランスに影響していることが示唆された。

## (2) 敗血症モデルマウスにおけるレドック スバランス測定

マウスの尾静脈に ACP を投与したところ、 シグナルの減衰速度定数は敗血症モデルマ ウスで有意に低下した(図4)。BUN は敗血症 モデルマウスで高く、腎障害が示唆された (図5)。血中及び肝臓中の総プローブ濃度の 時間的推移を比較したところ両群に差は認 められなかったことから体内のプローブ濃 度変化の差がシグナル減衰速度に影響して いるのではないことが判明した (data not shown)。PEG-SOD とカタラーゼを静脈内投与 したところ、完全ではないものの敗血症モデ ルマウスにおけるシグナルの減衰速度定数 の低下が回復した(図6)。これらの結果から、 敗血症モデルマウスにおけるシグナル減衰 速度の低下は体内のレドックスバランスが 酸化に傾いていることを示しており、これに は血中のスーパーオキサイドが影響してい るものと考えられる。

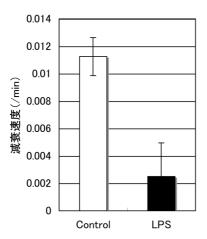



図 4 敗血症モデルマウスにおけるシ グナル減衰速度

ACP を投与後 whole body での ESR シグナル強度変化より算出した。n=5、p<0.001

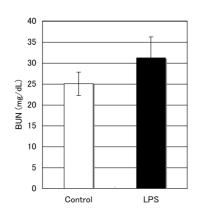



図 5 敗血症モデルマウスと健常マ ウスの BUN の比較

n=5, p<0.005

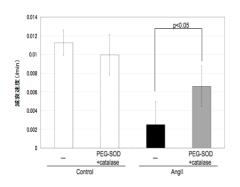



図 6 敗血症モデルマウスにおけるシグナル減衰速度低下に及ぼす抗酸化剤の影響 1.4 U/g-b.w. PEG-SOD、107 U/g-b.w. catalase を ACP 投与前に静脈内投与した。

# (3) 腎臓における局所的レドックスバランス測定法の検討

ACP は体内で加水分解後、大部分が還元体 として存在することが分かっている(Saito et al. Free radic. Biol. Med. 36:517-525. 2004)。このため whole body に比べて感度が 低下する局所的検出ではシグナルの検出が 困難である可能性を考え、酸化型のプローブ 3-carbamoy1-PROXYL を静脈内投与し、ESR シ グナルの経時的測定を行った。しかし、この 場合にはシグナルの消失速度定数が時間に よって変化していく (1-5 min: 0.1422/min、 11-15 min: 0.0063/min 、 36-40 min: 0.0021/min) ことが判明した。おそらくプロ ーブの分布と同時に還元が起こっており、レ ドックスバランスの測定には不適であると 判断した。局所的測定のための最適プローブ についてさらに検討が必要である。

合成・精製した HQ-GSH 抱合体をラットに静脈内投与し、6 時間後に血清クレアチニン値が上昇することから、今回合成・精製したHQ-GSH 抱合体が腎毒性を示すことを確認した。

#### (4) まとめ

HQ-GSH 抱合体の腎毒性と腎臓におけるレドックスとの関係の解析には至らなかったが、高血圧モデルと敗血症モデルにおいてはin vivo ESR 法により生体内のレドックス変化を測定することができた。この方法を用いて障害の進行とレドックス変化との相関を調べることでより明確に酸化ストレスと病態との関連を示すことができると考えられる。

## 5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者には下線)

## 〔学会発表〕(計3件)

#### ①岡崎祥子

高血圧モデルマウスにおいてアシル保護ヒドロキシルアミンプローブ ACP を用いた in vivo ESR 法で観測された生体内レドックス変化

日本薬学会第 129 年会

2009年3月27日

京都 (国際会館)

## ②岡崎祥子

アシル保護プローブを用いた in vivo ESR による 病態モデルマウスのレドックス評価

第25回日本薬学会九州支部大会

2008年12月7日

延岡 (九州保健福祉大)

#### ③岡崎祥子

Evaluation of Redox status of Disease Model

Mice by *in vivo* EPR Spectroscopy with Acyl-Protected Hydroxylamine Probes Biomedical redox navigation: EPR2008 2008年9月28日 福岡(JALリゾートシーホークホテル)

## 6. 研究組織

(1) 研究代表者 岡崎 祥子 (OKAZAKI SHOKO) 崇城大学・薬学部・助教 研究者番号: 40435152

- (2)研究分担者 なし
- (3)連携研究者なし