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The Antinociceptive Effect of Intrathecal Administration
of Glycine Transporter-2 Inhibitor ALX1393 in a Rat

Acute Pain Model

Yasunori Haranishi, MD*  BACKGROUND: Glycinergic neurons in the spinal dorsal horn have been implicated in
the inhibition of spinal pain processing in peripheral inflammation and chronic
Koji Hara, MD, PhD* pain states. Neuronal isoform glycine transporter-2 (GIyT2) reuptakes presynapti-

Tadanori Terada, MD* study, we examined whether a selective GlyT2 inhibitor, ALXIB;)S, elicits an
“ bt antinociceptive effect in a rat acute pain model.
METHODS: Male Sprague-Davley ras were mplanted with a cathter intrathecally

Seiya Nakamura, MD, PhDY  The effects of intrathecal admir
mechanical, and chemical nocice

tration of ALX13

3 (4, 20, or 40 ug) on thermal,
ion were evaluated by tail flick, hot plate, paw

Takeyoshi Sata, MD, PhD*  pressure, and formalin tests FuPrlhermure, to explore whether ALX1393 affects
motor function, a rotarod test was performed.
RESULTS: ALX1393 exhibited antinociceptive effects on the thermal and mechanical
stimulations in a dose-dependent manner. The maximal effect of ALX1393 was
observed at 15 min after administration, and a significant effect lasted for about 60

‘min. These antinociceptive effects were revers

completely by strychnine injected

immediately after the administration of ALX1393. In the formalin test, ALX1393
inhibited pain behaviors in a dose-dependent manner, both in the early and late
phases, although the influence was greater in the late phase. In contrast to
antinociceptive action, ALX1393 did not affect motor function up to 40

CCONCLUSIONS:

s study demonstra

s the antinociceptive action of ALXE393 on

acute pain. Thes

the inhibitor,

4
are promising targels for the treatment of acute pain and that the selective inhibitor
of GlyT2 could be a novel therapeutic drug,
(Anesth Aalg 2010,110:615-21)

G]ycine is a major inhibitory neurotransmitter in
the central nervous system (CNS). Glycinergic neu-
rons in the spinal dorsal horn have been implicated
as having a erucial role in the inhibition of spinal
pain p ing in i ion and the
chronic pain state. Previous studies have shown
that intrathecal administration of the glycine recep-
tor antagonist, strychnine, can elicit nociceptive
responses,*~* whereas intrathecal glycine was found
to prevent mechanical hyperalgesia in a rat neuro-
pathic pain model. The synaptic function of glycine
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released presynaptically is terminated by uptake via
Na'/Cl"-dependent glycine transporters (GlyTs). The
concentrations of glycine at the glycinergic synaptic
cleft can be controlled by GlyTs activities. Two GlyT
subtypes have been identified (GlyT1 and GlyT2).*
GlyTl is expressed widely in the CNS and is localized
mainly in glial cells surrounding both inhibitory and
excitatory synapses. GlyT1 is also found on the termi-
nals of some excitatory neurons expressing N-methyl-
D-aspartate (NMDA) receptors, where glycine acts as a
coagonist of glutamate to facilitate excitatory neuro-
transmission mediated by NMDA receptors. Thus, the
inhibition of GlyT1 can enhance the activities of exci-
tatory neurons and may counteract the enhanced
glycinergic neurotransmission. In contrast, GlyT2 is
localized mainly at the presynaptic terminals of gly-
cinergic neurons in the spinal cord, brainstem, and
cerebellum. The overall distribution of GlyT2 parallels
that of glycine receptors. GlyT2 is thought to be the
main isoform mediating the clearance of glycine
presynaptically released at the inhibitory synaptic
cleft.”® Therefore, one can postulate that the GlyT2
inhibitor facilitates the glycinergic neurotransmi
and has the ability to suppress spinal nociceptive
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Recently, Tanabe et al.” reported the antinocicep-
tive and antiallodynic effects of selective GlyT1 inhibi-
tors in mice inflammatory and neuropathic pain
models. Other investigations have demonstrated that
selective inhibitors of GlyT2, as well as GlyT1, are
effective in regulating nociceptive responses in mouse

of the lumbar enlargement through an incision in the
atlantooccipital membrane. A 7-day interval was al-
lowed to elapse before including an animal in the
study. Rats with any neurological dysfunction, such as
hindlimb paralysis or urine incontinence, were ex-
cluded from the study. Proper location of the catheter

and rat ic pain models.'!" gly-
cine injected intrathecally can partially activate the
NMDA receptor, and a GlyT1 inhibitor also mediates
both excitatory and inhibitory actions, as observed in
previous studies.'®!! Therefore, a GlyT2 inhibitor is
expected to produce a more potent antinociceptive
effect than glycine or the GlyT1 inhibitor, with little
adverse action. GlyT2 may be a promising target of an
ideal therapeutic drug for acute and chronic pain
states.

In this study, we first examined whether the
intrathecal administration of ALX1393, a selective
GlyT2 inhibitor, ' has an antinociceptive effect on
thermal, mechanical, and chemical stimulations in a
rat acute pain model. To explore the clinical avail-
ability, the effect of ALX1393 on motor function was
also examined.

METHODS
Animals and Drug Preparation

This study was approved by the Ethics Committee
of Animal Care and Experimentation at the University
of Occupational and Environmental Health, Japan.
One hundred ninety male Sprague-Dawley rats
(Kyudo, Fukuoka, Japan) weighing 180-230 g were
used in this study. Rats were housed with free access
to food and water and maintained on a 12:12 h
light-dark cycle at constant room temperature 22°C =
2°C and humidity 50% * 5%. All experiments were
performed at the same time (between 10:00 and 17:00)
during the light period. Rats were assigned randomly
to treatment groups, with the experimenter blinded to
the treatments. All experimental groups consisted of
6-10 rats, unless otherwise noted.

ALX1393 (O-[(2-benzyloxyphenyl-3-flurophenyl)
methyl]-L-serine), dimethyl sulfoxide (DMSO), pento-
barbital sodium, and strychnine hydrochloride were
purchased from Sigma (St. Louis, MO). Polyethylene
catheters (PE-10) were obtained from Becton, Dickin-
son and Company (San Jose, CA). ALX1393 was first
dissolved in DMSO and then diluted in 0.9% physio-
logical saline. The highest final concentration of
DMSO was 50% for 40 and 60 pug of ALX1393 and 25%
for 4 and 20 pg. Strychnine was dissolved in saline.

Intrathecal Catheter Implantation

was confirmed by hindlimb paralysis after the injec-
tion of 10 uL of 2% lidocaine 2 days before the study.
For assays, 10 L of ALX1393 (4, 20, 40, or 60 ig) or
DMSO (25% or 50%) was administered intrathecally,
followed by 10 uL of saline to flush the catheter.

Tail Flick Test

A radiant heat source was focused on the middle
part of the rat’s tail. The time interval from the onset of
the stimulus until the tail flick response was measured
using a tail flick unit (7360, Ugo Basile, Comerio,
Italy). The intensity of the radiant heat was adjusted to
give a tail flick latency of 4-5 s before the administra-
tion of ALX1393 or vehicle (DMSO 25% or 50%). In the
absence of a response, the stimulus was terminated
after 15 s (cutoff) to prevent tissue damage. The effects
of ALX1393 (4, 20, and 40 pg) were assessed at 15 min
after administration, and a time course for the action
of ALX1393 (40 pg) was recorded for 180 min.

The measured reaction latencies (s) were converted to
the percentage of the maximum possible effect (%MPE)
according to the formula: %MPE = ([ALX1393-treated
latency] — [vehicle-treated latency])/(15[cutoff] —
[vehicle-treated latency]) X 100.

Hot Plate Test

The hot plate test was performed using a hotplate
analgesia meter (model 0134-003M, Columbus Instru-
ments, Columbus, OH). Rats were placed on a metal
plate enclosed by Plexiglass walls maintained at
52.5°C £ 0.1°C. The behavioral end point was the time
(s) at which the rats exhibited licking or shaking of the
hindpaw or jumping. Rats were removed from the hot
plate if they did not respond within 30 s (cutoff) to
prevent tissue damage. The effects of ALX1393 (4, 20,
and 40 ug) and vehicle (DMSO 25% or 50%) were
assessed at 15 min after administration, and the time
course of the action of ALX1393 (40 pg) was re-
corded for 180 min. The measured reaction latencies
(s) were converted to the %MPE according to the
formula: %MPE = ([ALX1393-treated latency] —
[vehicle-treated latency])/(30[cutoff] — [vehicle-treated
latency]) X 100.

Paw Pressure Test
The response to noxious mechanical stimulation

For multiple i of drugs,
lumbar catheters were implanted in all rats according
to the procedure by Yaksh and Rudy. Under anes-
thesia using pentobarbital sodium (75 mg/kg, IP,
supplemented as necessary), a stretched PE-10 poly-
ethylene catheter (8.5 cm) was inserted into the intra-
thecal space and advanced caudally to the rostral edge

616 Gl

Transporter and Pain Treatment

grams, and the cutoff was 750 g. Threshold measure-
ments were repeated 3 times and the average was
taken. The effects of ALX1393 (4, 20, and 40 pg) and
vehicle (50% DMSO) were assessed at 15 min after
administration, and the time course of action for
ALX1393 (40 pg) was observed for 120 min.

Formalin Test

Rats were first placed in a plastic observation cham-
ber (25 X 25 X 30 cm) for at least 15 min to acclimate to
the envi The rats were y injected
into the plantar surface of the hindpaw with 50 uL of 5%
formalin solution using a 27-gauge needle. The formalin
injection produced the characteristic pain response: bi-
phasic flinching/shaking of the injected paw. Such
pain behaviors were quantified by periodically count-
ing the number of spontaneous flinching/shaking
responses. They were counted for 1-min periods at 1 to
2 min, 5 to 6 min, and 10-min intervals from 10 to 60
min after the formalin injection. Because the observed
pain behavior was biphasic, the evaluation of the
flinching/shaking response was divided into 2
phases, Phase I (0-10 min) and Phase II (10-60 min),
after formalin injection. To investigate the effect of
ALX1393, the vehicle (50% DMSO) or ALX1393 (4, 20,
or 40 pg) was administered intrathecally 15 min before
formalin injection.

Rotarod Test

The influence on motor performance was assessed
using an accelerating rotarod (model 47700, Ugo
Basile) in which the rats were placed on a rotating
drum, with the speed increasing from 4 to 40 rpm over
5 min, and forced to make forward walking move-
ments to avoid falling. The latencies (s) to fall were
measured. Training sessions were performed 1 and 2
days before the experiments with 3 trials on each day.
On the experimental day, a baseline response was
obtained, and the rats were adminis-

w ined by measuring the vocalization thresh-
old to paw pressure as described by Randall and
Selitto'® using an analgesy-meter (Ugo Basile). In-
creasing pressure (32 or 48 g/s) was applied through
a plastic tip onto the dorsal surface between the third
and fourth metatarsus of the hindpaw until the rat
squeaked. Vocalization thresholds were expressed in
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Figure 1. A, Effect of intrathecal administration of ALX1393
on thermal nociception in the rat tail flick test. Intensity of
the radiant heat was adjusted to give a tail flick latency of
4-5 s before administration of ALX1393 or vehicle. ALX1393
increased the tail flick latency in a dose-dependent manner
at 15 min after administration. The antinociceptive effect of
ALX1393 (40 pg) was reversed completely by intrathecally
administered strychnine (10 g). Data are expressed as the
percentage of the maximum possible effect (%MPE) of
means = sem. B, Time course of the antinociceptive effect of
ALX1393. The maximal effect of ALX1393 (40 pg) was
observed at 15 min postinjection, and the antinociceptive
effects lasted for 60 min. Each group consists of 8 rats. **P <
0.01 compared with the vehicle.

RESULTS
inoci Effects of ALX1393 on

tered ALX1393 (20, 40, or 60 ug) or vehicle (50%
DMSO). The time course of motor performance was
assessed every 30 min for 120 min after injection.

Effects of Strychnine on the Antinociceptive Actions
of ALX1393

To confirm whether ALX1393 actions are mediated
by glycinergic neurotransmission, an antagonist of the
glycine receptor, strychnine (10 pg), was administered
intrathecally immediately after ALX1393 injection in
the thermal and mechanical tests.

Data are represented as the mean = sem. Data were
analyzed by one-way analysis of variance, followed by
the Dunnett test for multiple comparison and the
unpaired f-test. Statistical analyses and calculations of
area under the curve (number of flinching/shaking X
minutes) in the formalin test were performed using
StatView-] 5.0 (Abacus Concepts, Berkeley, CA) and
GraphPad Prism 4.03 software (GraphPad San Di-
ego, CA). Di were consi at
P < 0.05.
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Thermal Stimulation

To determine whether ALX1393 modulates thermal
pain, tail flick and hot plate tests were performed.
ALX1393 prolonged the tail flick latencies in a dose-
dependent manner at 15 min after administration (Fig.
1A). Significant effects were observed at 20 ug ALX1393
(60.3% * 10.6%, P < 0.001). The antinociceptive effects of
40 pg ALX1393 lasted for 60 min (Fig. 1B). The effect of
ALX1393 was reversed completely by intrathecally ad-
ministered strychnine (~7.2% * 9.3%; Fig. 1A).

Baseline measurements of the latency in the hot
plate test were 9.0 = 0.6 s. ALX1393 also displayed
antinociceptive responses in a dose-dependent man-
ner at 15 min after administration (Fig. 2A). Significant
effects were observed at 20 pg ALX1393 (29.6% *
11.6%, P = 0.011). The antinociceptive effects of 40 ug
ALX1393 lasted for 60 min (Fig. 2B). The effect of
'ALX1393 was abolished by intrathecally administered
strychnine (32% = 55%; Fig. 2A). In preliminary
experiments, the effects of strychnine (10 ug) alone on

© 2010 International Anesthesia Research Society 617
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Figure 2. A, Effect of intrathecally administering ALX1393 on
thermal nociception in the rat hot plate test. ALX1393
increased the latency in a dose-dependent manner at 15
after administration. The antinociceptive effect of ALX1393
(40 pg) was abolished completely by intrathecally adminis-
tered strychnine (10 ug). Data are expressed as the percent-
age of the maximum poaaxbk effect (%MPE) of means =
sem. B, Time course of the antinociceptive effect of ALX1393.
The maximal effect of ALXH‘J" (40 pg) was observed at 15
min postinjection, and the antinociceptive effects lasted for
60 min. Each group consists of 8 rats. *P < 0.05; **P < 0.01
compared with the vehicle.

the tail flick and hot plate latencies were —14.4% *
2.3% and —11.5% * 2.6%, respectively (n = 5).

Antinociceptive Effects of ALX1393 on
Mechanical Stimulation

To determine whether ALX1393 reduces pressure-
evoked pain, rats were subjected to the Randall-Selitto
test. The baseline of vocalization threshold to paw
pressure was 224 + 11 g. ALX1393 (40 pg) increased
the vocalization threshold significantly (514 + 48 g,
P < 0.001; 20 pg: 283 = 25 g, P = 0.158; Fig. 3A), and
the effects lasted for 30 min after administration (Fig.
3B). The effect of ALX1393 was reversed completely
by intrathecally administered strychnine (198 = 11 g;
Fig. 3A).

Antinociceptive Effects of ALX1393 on
Chemical Stimulation

To further examine whether ALX1393 causes an
antinociceptive effect on chemical stimulation, the for-
malin test was performed. ALX1393 suppressed the
flinching/shaking behavior in both phases dose depen-
dently (Fig. 4A). Calculation of the area under the curve
revealed that only 40 ug ALX1393 significantly decreased
the flinching/shaking behavior in Phase I (P = 0.002),
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Figure 4. Antinociceptive effect of mlralhecal administration
of ALX1393 on formalin-induced paw flinching/shaking
behavior. An injection of formalin into the hindpaw of rats
produced a biphasic pain response. ALX1393 or vehicle was
spplied 15 in before formalin injection. lnching/shaking
was counted for 1-min periods at 1 to 2 min, 5 to 6 min, and
10min ntervals from 10 10 60 min after the formalin
injection. Data are expressed by (A) the time course curves
and (B) the area under the curve (AUC, number of
flinching/shaking X minutes; means * sem). Each group
consists of 8 rats. *P < 0.05; **P < 001 compared with the
vehicle.
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Figure 5. Effect of intrathecally administering ALX1393 on
motor performance in the rat rotarod test. ALX1393 had no
influence on motor function up to 40 g, at which point it
represented the antinociceptive effect. The highest dose of
ALX1393 (60 ig) significantly interfered with motor func-
tion. Data are expressed as latencies of the means + SEM.
Each group consists of 6 rats. *P < 0.05; **P < 0.01 compared
with the vehicle.

synaptic connections with spinal projection neurons.
The activation of these projection neurons not only
depends on the primary afferent input but also is
under the control of a local network of excitatory and
inhibitory interneurons, as well as descending pain-
modulating tracts." Because the glycinergic neurons are
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Figure 3. A, Effect of intrathecally administering ALX1393 on
mechanical nociception in the rat Randall and Selitto test.
ALXI393 @0 pg) significantly increased the vocalization
threshold to paw pressure at 15 min after administration. The
antinociceptive effect of ALX1393 was reversed completely by
intrathecally administered strychnine (10 ug). Data are ex-

pressed as the threshol
course of the antinociceptive effect of ALX1393. The maximal
effect of ALX1393 (40 ug) was observed at 15 min postinjection,
and the antinociceptive cffects lasted for 30 min. Each group
consists of 10 rats. **P < 0.01 compared with the vehicle.

Id in grams (means *+ sem). B, Time

whereas significant decreases were observed at 20 g in
Phase II (P = 0.003), indicating that ALX1393 predomi-
nantly inhibits the Phase I response (Fig. 4B).

Effects of ALX1393 on Motor Function

The effect of ALX1393 on motor activity was deter-
mined using the rotarod test. Baseline latency was
124 + 35. ALX1393 produced no significant change in
the rotarod latency up to 40 pg (Fig. 5). At the highest
dose (60 g), at which one-third of the rats tested (3 of
9) died soon thereafter because of respiratory suppres-
sion, the rats displayed disturbed motor function but
tended to recover to the vehicle value.

DISCUSSION
This study first demonstrates the antinociceptive
effects of an intrathecally administered GlyT2 inhibi-
tor on acute pain in rats. The inhibitory neurons that
include glycine and/or y-aminobutyric acid in the
spinal cord dorsal horn have important roles in the
on of spinal nociceptive processing. The pri-
mary nociceptive afferents from the periphery make
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the processing of mechanical input.'® In fact, spinal
glycinergic interneurons have been shown to be di-
rectly activated by input from mechanoreceptors us-
ing an in vivo patch-clamp technique.'” In addition,
local glycinergic interneurons are probably activated
by descending antinociceptive pathways that can be

in response to and thermal
nociception."® Furthermore, inhibitory input to the
dorsal horn neurons also originates from the rostral
ventromedial medulla and contact nociceptive spino-
thalamic projection neurons,' which suggests that
glycinergic neurons are also associated with the su-
praspinal control of the spinal nociceptive processing.

ALX1393 increased the thresholds for thermal
stimulation in both the tail flick and the hot plate tests.
The tail flick response is recognized as a spinally
integrated nociceptive reflex, whereas the hot plate
response is considered to be a complex response
integrated supraspinally on acute nociceptive process-
ing. Consequently, the prolonged reaction latency
observed in the ALX1393-treated rats seems to have
been derived from the activation of glycinergic inter-
neurons and descending glycinergic neurons at the
spinal dorsal horn.

The restricted distribution of GlyT2 in glycinergic
neurons suggests its pivotal role in the regulation of
d et al®

an increase in lycine via
microdialysis perfusion with a GlyT2 inhibitor in the
rat dorsal spinal cord. Bradaia et al.,*' using whole-cell
voltage clamp recording, concluded that the GlyT2
inhibitor increased the level of glycine in rat spinal
cord, and in turn prolonged the duration of the
glycinergic synaptic current. To confirm that the an-
tinociceptive effect of ALX1393 was attributable to the
inhibition of GlyT2 and the subsequent activation of
postsynaptic glycine receptors, the effect of strych-
nine, an inhibitor of the glycine receptor, was tested in
response to thermal and mechanical nociception.
The antinociceptive effect of ALX1393 was reversed
completely by strychnine administered concur-
rently with ALX1393, indicating that the ALX1393
action is induced by the enhancement of the glycin-
ergic neurotransmission.

ALX1393 exhibited analgesic action on mechanical
nociception. The vocalization threshold to paw pres-
sure increased significantly with a high dose of
ALX1393. Although paw withdrawal behavior is re-
garded as a spinally integrated pain response, the
vocalization is a more integrated pain response that
involves a supraspinal mechanism.

The formalin test is used widely for chemically
induced acute and persistent pain assessment.? Typi-
cally, a biphasic response is observed after the in-
traplantar injection of formalin in the hindpaw of rats.
The early phase is the response to direct chemical

glycinergic

localized between axons from primary
tve afferents and central projection neurons, the glycin-

ptors through A8 and C-fibers,
and the fate. phase can be attributed to peripheral

ergic is to to
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of nociceptive spinal neurons.** Our results from the
Phase I response indicate that the inhibition of GlyT2
can suppress the nociception by direct chemical stimu-
lation. In Phase II, ALX1393 also inhibited the
nociceptive response to persistent pain induced by
formalin in a dose-dependent manner. The inhibitory
potency in Phase II seemed to be greater than that in
Phase 1. It has been shown that formalin releases
prostaglandins (PGs), excitatory amino acids, nitric
oxide, and neuropeptides,** which in turn induce
inflammatory processes. Ahmadi et al.** reported that
PGE, selectively interfered with strychnine-sensitive
glycinergic neurotransmission in the superficial layers
of the dorsal horn, where nociceptive afferents mainly

A recent generation of GlyT2 knockout mice re-
vealed a decreased glycine release at the glycinergic
nerve terminals.*® Because this study did not investi-
gate the effect of prolonged administration of
ALX1393 on acute pain, further experiments are
needed to understand a chronic effect of ALX1393.
ALX1393 can penetrate the blood-brain barrier; a
comparison of its systemic action with intrathecal
action observed in this study would be worth inves-
tigating for a better understanding of how the GlyT2
inhibitor elicits antinociception in the CNS and which
administration route is desirable.

Our previous investigations suggested that neuro-
transmitter transporters on the presynaptic plasma
are one of the targets for anesthetics, and

terminate. The PGE,-mediated of the
glycinergic neurotransmission on the postsynaptic le-
sion is at least in part thought to underlie central
inflammatory hyperalgesia. However, it i likely that
the enhanced glycinergic neurotransmission in the
spinal cord by ALX1393 could overcome the disinhibi-
tory sequel derived from formalin injection and
strengthen the glycinergic inhibitory system. From
this result, the glycinergic neurons might participate
in the regulation of the Phase II response to a larger
extent than that of Phase I.

In this study, the maximal responses to ALX1393
were observed at 15 min after administration, and
significant effects lasted for approximately 60 min.
Given the rapid onset and short duration of action, as
well as the effects of strychnine, the analgesic action of
ALX1393 seems to be derived only from its primary
pharmacological action and is not involved in other
mechanisms.

To exclude the possibility that the GlyT2 inhibition
affects motor function and to explore the clinical
availability of the GlyT2 inhibitor, we performed the
rotarod test. ALX1393 displayed no influence on mo-
tor function up to 40 g, at which point it elicits a
marked antinociceptive effect. Thus, the dose of
ALX1393 having analgesic action would be clinically
relevant. However, at the highest dose of ALX1393 (60
1), the motor function was disturbed, and some rats
died probably because of respiratory suppression. It is
conceivable that the spinally applied ALX1393 partly
diffused to the brainstem, resulting in respiratory
suppression. Properties of ALX1393 action in this
study seem to be different from those in the previous
studies with neuropathic pain models. Morita et al."’
showed in mice that the antiallodynic action of
ALX1393 lasted for 72 h, and motor function was
preserved even at the highest dose. In contrast, Her-
manns et al.'"" found that the antiallodynic effect
occurred only at the concentration at which motor
performance was disturbed in rats. The reason for the
discrepancy between their findings and ours remains
tobe ; however,
models, species, and solvents of ALX1393 might be
involved.
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that their inhibition may at least in part mediate the
anesthetic action.”?* Many studies of inhibitory neu-
rons have focused on postsynaptic receptors. We
propose that presynaptic neurotransmitter transport-
ers may provide another clue to the solution of acute
and persistent pain.

In conclusion, this study demonstrates the antino-
ciceptive effects of intrathecal ALX1393 against ther-
mal, mechanical, and chemical nociception, which
induce both spinally and supraspinally integrated
pain responses. The findings from this study suggest
that the selective inhibitor of GlyT2 can be a candidate
for a novel remedy to ameliorate acute pain; however,
further research is needed for a clinical application of
the drug.
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