研究成果報告書 科学研究費助成事業

今和 1月20日現在 5 年

機関番号: 13102
研究種目: 基盤研究(B)(一般)
研究期間: 2019~2021
課題番号: 19H02429
研究課題名(和文)ホットアトムと含水MoO3多孔体による99mTc医療用放射性同位元素作製法開発
研究課題名(央文)A production method of iC-99m medical radioactive isotopes by not atoms and hydrated MoO3 porous targets
研究代表者
末松 久幸 (Suematsu, Hisayuki)
長岡技術科学大学・工学研究科・教授
研究者番号:30222045
交付決定額(研究期間全体):(直接経費) 13,400,000円

研究成果の概要(和文):パルス通電加圧焼結、高圧・常圧加熱処理、パルス細線放電、蒸発法により、 -MoO3多孔体、 - MoO3デンドライトと -MoO3ウイスカーを作製し、これに対して中性子照射と通水試験を行っ た。Mo-99の水への抽出に関し、 -MoO3が最高の効率を示し、生成したMo-99の67%が水に移動したことが分かっ た。これは、 -MoO3と比べて -MoO3のMo-0層間距離が長く、水和物を形成できるために水分子が結晶中を移動 しやすいこと、ウイスカーの一方向の寸法がホットアトム効果によるMo-99のMoO3中の拡散距離3nmに近いことが 理由と考えられた。

研究成果の学術的意義や社会的意義 本研究により、高温濃NaOH溶液へのターゲット溶解での潜在的危険性や、Mo-98からMo-99の同位体分離技術の開 発なしに、中性子照射した - MoO3ウイスカーターゲットを水に分散・フィルター濾過するだけでMo-99水溶液 を抽出する技術の開発に成功した。これにより、Mo-99とその娘核種であるTc-99mの医療用放射性同位体製剤 の、国内安定供給法確立に道を拓いた。本技術は、高濃縮U-235燃料を用いた原子炉を必要とせず、世界の核拡 散防止にも大きな貢献が可能と考えられる。

研究成果の概要(英文):Alfa-MoO3 porous sintered bodies, alfa-MoO3 dendrites and beta-MoO3 whiskers were prepared and irradiated by neutrons. After the irradiation, they were dispersed in water. beta-Mo03 whiskers showed the highest recovery ratio of Mo-99 into water of 67%. These results were thought to be caused by the long Mo-0 interlayer distance, the hydration property and the short width of beta-Mo03 whiskers, in which water and 99Mo can easily diffuse. In this research, a novel Mo-99 production method only disperse the neutron irradiated target in water has been developed.

研究分野: 材料科学

キーワード: 医療用放射性同位体 ホットアトム

1. 研究開始当初の背景

心臓、骨肉腫の診断などに用いられる^{99m}Tcは、⁹⁹Moの崩壊で生まれる医療用放射性同位 元素である。この⁹⁹Moは、高濃縮²³⁵Uを核燃料とする研究炉の核分裂生成物から分離・利 用されている。高濃縮²³⁵U核燃料は、発電用軽水炉の5%濃縮²³⁵U核燃料と異なり、原爆転 用の懸念があり、核セキュリティーの観点からこれを使える研究炉が少なく新造も出来な い。このため、高濃縮²³⁵U核燃料を使わずにすむ、国内での安定的な製造法開発が求めら れている。

これを受けて、日本原子力研究開発機構(JAEA)には、天然 Mo の 24%の同位体である ⁹⁸MoO₃ ターゲットを中性子照射して、(n,γ)反応で ⁹⁹Mo を製造する計画がある。生成した ⁹⁹Mo の回収のためには、ターゲット全量を一旦高温濃 NaOH 水溶液に溶解する必要があり、 潜在的な危険性を有していた。さらに、溶解後の NaOH 水溶液中の Mo イオンのほとんど は ⁹⁸Mo であり、この中から ⁹⁹Mo のみ選択的に同位体分離する樹脂の開発が必要であった。 このため、ターゲット溶解が不要な ⁹⁹Mo の回収方法ができないかという強い要請が生じた。

代表者等による予備実験で、α-MoO₃粒子に中性子照射した後水に分散すると、水に不 溶なα-MoO₃から⁹⁹Moが水に移動することが判明した。これはγ線の反跳エネルギーで MoO₃の結合を切断し、イオンの価数変化させるホットアトム効果の表れであると代表者等 は考えた。このホットアトム効果でターゲット表面に水溶性の⁹⁹Moを移動させ、通水のみ によって回収する技法の可能性を指摘したことが本研究の背景であった。一方、モンテカル ロ法による計算結果から、MoのMoO₃中での拡散距離は 3nm と分かったため、MoO₃粒子 中心から 3nm で表面に達するような微構造を持ち、かつフィルターで水と容易に分離可能 な多孔体、ウイスカー、デンドライト結晶がターゲット材料として好適であると着想した。

2. 研究の目的

本研究は、(n, γ)反応による ^{99m}Tc の安定供給のため、中性子照射用ターゲット開発と水 による ⁹⁹Moの抽出法構築を目的とし、下記の項目について実験・計算を行った。

- (1) α-MoO₃多孔体作製
- (2) α-MoO3 デンドライト作製
- (3) β-MoO₃ ウイスカー作製と反応性測定
- (4) ターゲットの中性子照射と水による ⁹⁹Mo 抽出

3. 研究の方法

<u>(1) α - MoO₃ 多孔体作製</u>

パルス通電加熱焼結(PECS)を用いた低温焼結法と、NaClと共に焼結した後水溶解法、 高圧合成法、Mo金属線の酸化法の4つの方法を試みた。最も好適であった Mo金属線の酸 化法では、Mo金属線を大気中 500-550℃で7時間加熱し、Mo-α-MoO3線を作製した。

<u>(2)気相-固相(V-S)法による α - MoO₃ デンドライト作製</u>

α-MoO₃粉末を、自作した徐冷領域の長い管状炉の高温部に静置した。これをArフロー 中 800-1000℃で加熱し、この内壁に成長したデンドライトを回収した。相は XRD で、形態 は SEM で観察を行った。 <u>(3) β-MoO</u>3 ウイスカー作製と反応性測定

パルス細線放電法と V-S 法により β-MoO₃ ウイスカーを成長させた。V-S 法では、管状炉 で α - MoO₃ 粉末を 750-1000℃に加熱し、Ar フローおよび真空排気で 60kPa を維持し、MoO₃ 蒸気を急冷させた。

(4) ターゲットの中性子照射と水による ⁹⁹Mo 抽出

金属線酸化法で作製した Mo-α-MoO₃線、(2)で作製したα-MoO₃デンドライト、(3)で 作製したβ-MoO₃ウイスカー、および比較用のα-MoO₃粉末 0.3-1.0gを、京都大学研究用 原子炉(KUR)とベトナム原子力研究所(DNRR)で中性子照射した。KUR では 3x10¹³n/cm²s で 20 分間、DNRR では 1.1x10¹³n/cm²s で 108 と 91 時間中性子照射した。それぞれの照射後 の試料(固体試料)は数日冷却の後、おのおのの一部をろ紙に固定し、γ線検出器で放射能 測定を行った。この後、固体試料を 0.02g/ml の割合で水に分散し、20 時間静置後遠心分離 機と濾過により溶液(溶液試料)を得た。この溶液をろ紙にしみこませ、放射能測定を行っ た。この時間差による半減期 66 時間の ⁹⁹Mo の崩壊を考慮するため、固体試料の放射能測 定時に存在したであろう溶液試料の放射能を推定した。

放射能測定の後、誘導結合プラズマ発光-質量分析(ICP-MS)にて、溶液試料中の⁹⁸Mo安 定同位体の濃度を測定し、これと放射能から算出した⁹⁹Mo濃度を比べることによりホット アトム効果を評価した。

4. 研究成果

<u>(1) α-MoO₃多孔体作製</u>

Fig. 1 に金属線酸化法で作製された α - MoO₃ 多孔体の SEM 像を示す。線の表面には α - MoO₃ に特徴的な板状結晶多数が見られ、多孔体を形成していることが分かる。一方、これ をはがした内部には、緻密な金属 Mo 線が残存していることが分かった。

Fig.1 金属線酸化法で作製された α - MoO₃ 多孔体の SEM 像

<u>(2) α-MoO₃ デンドライト作製</u>

Fig. 2 に α - MoO₃ デンドライトの SEM 像を Fig. 12 に示す。最大 6mm 長のデンドライト が見られた。α -MoO₃のウイスカー成長は報告例があるが、デンドライト結晶の成長は本研 究で初めて行われた。このα - MoO₃ デンドライトを中性子照射に使用することにした。

Fig. 2 α - MoO₃ デンドライトの SEM 像

<u>(3) β-MoO₃ ウイスカー作製と反応性測定</u>

V-S 法により作製された β - MoO₃ ウイスカーのこの SEM 像を Fig. 3 に。格子像を Fig. 4 に示す。長さ 300nm、幅数 nm の多数のウイスカーが見られる。この格子像を Fig. 18 に示す。面間隔と角度から、このウイスカーは β - MoO₃ からなることが分かった。 β - MoO₃ ウイスカーは本研究で初めて作製された。このウイスカーは、フィルターで溶液中から分離できるほどの長さがあるうえ、幅が ⁹⁹Mo ホットアトムの MoO₃ 中での拡散距離と同程度で、かつ水和可能なため水への ⁹⁹Mo の移動が期待され、中性子照射に使用することとした。

Fig. 3 β-MoO₃ ウイスカーの SEM 像 Fig. 4 β-MoO₃ ウイスカーの格子像

(4) ターゲットの中性子照射と水による ⁹⁹Mo 抽出

固体試料の γ 線スペクトルを Fig. 4 に示す。⁹⁹Mo と、この崩壊で生じた ^{99m}Tc のピークが 見られる。標準試料からの γ 線強度から検量線を作製し、このスペクトルの強度から ⁹⁹Mo 放射能を算出した。固体試料と溶液試料の放射能を Table 2 に示す。この比から、固体試料 から溶液試料へ移動した ⁹⁹Mo の割合を算出した。 α - MoO₃ 粉末と比較し、 α - MoO₃ 多孔 体・デンドライトでの割合はほぼ代わらなかったが、 β - MoO₃ ウイスカーで生成した ⁹⁹Mo の 66.8%が溶液試料に移動したことが分かった。

Table 3 に、安定同位体である ⁹⁸Mo の濃度を ICP-MS で測定した結果を示す。固体試料中 の ⁹⁸Mo の量との割合と、Table 2 での ⁹⁹Mo の割合を比較した。すべての試料において、⁹⁹Mo の割合は ⁹⁸Mo の割合より高く、ホットアトムにより ⁹⁹Mo が試料表面に移動したか価数変 化したかによって選択的に溶液試料に移動したことが分かった。なかでも β -MoO₃ ウイス カーターゲットはその効果が 1 桁高いことが判明した。

Fig. 4 固体試料のγ線スペクトル

Table 2 中性子照射後の粉末・溶液試料の) ⁹⁹ Mo	の放射能
-------------------------	--------------------	------

ターゲット	中性子照	放射能	放射能	固体から溶液試料へ
	射施設	(固体試料)	(溶液試料)	移動した割合: ⁹⁹ Mo
α - MoO3 多孔体	DNRR	0.72MBq	0.020MBq	2.8%
α-MoO3デンドライト	KUR	2.38MBq	0.031MBq	1.3%
β-MoO3ウイスカー	KUR	2.20MBq	1.47MBq	66.8%
α-MoO ₃ 粉末(比較)	DNRR	1.06MBq	0.041MBq	3.9%

Table 3 放射能と ICP-MS 測定から得た中性子照射前後の各ターゲット分散後の溶液試料 中に移動した Mo 同位体の割合

ターゲット	固体から溶液試料へ	固体から溶液試料へ移	
	移動した割合: ⁹⁸ Mo	動した割合: ⁹⁹ Mo	
α-MoO3多孔体	0.0013%	2.8%	
α-MoO ₃ デンドライト	0.00002%	1.3%	
β-MoO3ウイスカー	0.0011%	66.8%	
α-MoO ₃ 粉末(比較)	0.0009%	3.9%	

以上のように、各種 MoO₃ ターゲットへの中性子照射による(n, γ)反応のホットアトム効 果で、生成した ⁹⁹Mo がターゲットから水に移動すること、その際 β-MoO₃ ウイスカーター ゲットでは、水和しやすさや一方向の寸法がホットアトムの拡散距離と同程度のために、 ⁹⁹Mo が水に移動しやすいことが示された。この β-MoO₃ ウイスカーは長さが 300nm と長 く、フィルターで水と分離が容易であることから、中性子照射後に ⁹⁹Mo の大部分を含む溶 液試料を得やすいことが分かった。

前述のように、世界で使われているほとんどの ⁹⁹Mo は、(n,f)法により高濃縮 ²³⁵U 燃料を 使った原子炉の使用済み核燃料の再処理で抽出されており、代替法による国内生産が求め られてきた。本研究により β - MoO₃ ウイスカーの中性子照射・水分散・フィルター分離を 行えば、溶液中に大部分の ⁹⁹Mo を抽出できると分かった。この際、他の技術を新たに開発 することなく医療機関に送付できる。この結果により、核セキュリティーや放射性同位元素 取扱リスクがほとんどない(n, γ)法による ⁹⁹Mo /^{99m}Tc 国内安定生産への道を拓いた。

5.主な発表論文等

〔雑誌論文〕 計8件(うち査読付論文 8件/うち国際共著 1件/うちオープンアクセス 1件) 4.巻 1. 著者名 N. M. Chu, N. D. Hieu, D. T. M. Dung, R. Sarathi, T. Nakayama, and H. Suematsu 102 2. 論文標題 5.発行年 Synthesis of Molybdenum Carbide Nanoparticles by using a Pulse Wire Discharge Method in 2019年 Kerosene and Argon Ambience 3. 雑誌名 6.最初と最後の頁 J. Am. Ceram. Soc. 7108-7115 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.1111/jace.16621 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難 該当する 1. 著者名 4.巻 N. M. Chu, N. D. Hieu, T. M. D. Do, T. Nakayama, K. Niihara and H. Suematsu 59 5 . 発行年 2. 論文標題 Synthesis of Metastable Monoclinic Beta Molybdenum Trioxide Nanoparticles by Pulsed Wire 2020年 Discharge 3.雑誌名 6.最初と最後の頁 SCCC02 Jpn. J. Appl. Phys. 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.7567/1347-4065/ab48b8 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難 1 著者名 4.巻 H. Suematsu, S. Sato, T. Nakayama, T. Suzuki, K. Niihara, M. Nanko and K. Tsuchiya 8 2. 論文標題 5.発行年 Two-step-pressurization Method in Pulsed Electric Current Sintering of MoO3 for Production of 2020年 99mTc Radioactive Isotope 3.雑誌名 6.最初と最後の頁 J. Asian Ceram. Soc. 1154-1161 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.1080/21870764.2020.1824326 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難 1.著者名 4.巻 N. M. Chu, N. D. Hieu, T. M. D. Do, T. Nakayama, K. Niihara, H. Suematsu 18 2.論文標題 5.発行年 -MoO3 Nanowhiskers from Core/shell Molybdenum/molybdenum Oxide Wire by Pulsed Synthesis of 2021年 Wire Discharge 3.雑誌名 6.最初と最後の頁 Inter. J. Appl. Ceram. Technol. 889-901 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 有

オープンアクセスとしている(また、その予定である)

国際共著

10.1111/ijac.13684

オープンアクセス

1 . 著者名	4 . 巻
N. M. Chu, N. D. Hieu, T. M. D. Do, T. Nakayama, K. Niihara and H. Suematsu	⁶¹
2.論文標題	5 . 発行年
Hydration Process of -MoO3 Powder	2022年
3.雑誌名	6.最初と最後の頁
Jpn. J. Appl. Phys.	SB101
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.35848/1347-4065/ac2a72	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	
1.著者名	4.巻
N. M. Chu, N. D. Hieu, T. M. D. Do, T. Nakayama, K. Niihara, and H. Suematsu	105
2 . 論文標題	5 . 発行年
Synthesis of -MoO3 Whiskers by a Thermal Evaporation Method with Oxygen Gas Flow	2022年
3.雑誌名	6 . 最初と最後の頁
J. Am. Ceram. Soc.	1622-1628
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1111/jace.18192	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	
1.著者名	4.巻
D. H. Nguyen, M. C. Ngo, Y. Tokoi, TMD. Do, T. Nakayama, H. Suematsu and K. Niihara	104
2 . 論文標題	5 . 発行年
Nanoparticle Synthesis of Transition-metal Borides by Pulsed Discharge of Compacted Powder	2021年
3.雑誌名	6.最初と最後の頁
J. Am. Ceram. Soc.	4351-4367
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1111/jace.17780	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	
1. 著者名 H. D. Nguyen, T. Sasaki, C. M. Ngo, Y. Tokoi, TMD. Do, T. Nakayama, H. Suematsu, and K. Niihara	4.巻 130
2 . 論文標題 Equation to Determine the Sizes of Various Light and Heavy Metallic Nanoparticles Prepared by Pulsed Wire Discharge	5 . 発行年 2021年
3.雑誌名	6 . 最初と最後の頁
J. Appl. Phys.	185901
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/5.0064989	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	

〔学会発表〕 計2件(うち招待講演 2件/うち国際学会 2件)

H. Suematsu, M. Seki, T. M. D. Do, M. Nanko, T. Suzuki, D. V. Dong T. Nakayama and K. Niihara

2.発表標題

1.発表者名

MoO3 porous materials for neutron irradiation targets for production of 99Mo/99mTc

3 . 学会等名

43th International Conference and Expo on Advanced Ceramics and Composites, Daytona Beach, USA(招待講演)(国際学会)

4. 発表年

2019年

1.発表者名

H. Suematsu, S. Sato, T. Q. Thang, M. Nanko, T. M. D. Do, T. Nakayama and K. Niihara

2.発表標題

Two-step pressurization method in pulsed electric current sintering of dense and porous MoO3 targets for 99Mo/99mTc radioactive isotope production

3 . 学会等名

8th International Congress on Ceramics(招待講演)(国際学会)

4.発表年

2021年

〔図書〕 計0件

〔出願〕 計1件

産業財産権の名称 モリブデン-99製造用ターゲット材料及びその製造方法	│ 発明者 │ 末松久幸、N. M. Chu ────────────────────────────────────	権利者 JAEA、末松久 幸、N、M、Chu
		他
産業財産権の種類、番号	出願年	国内・外国の別
特許、特願2022-63746	2022年	国内

〔取得〕 計0件

〔その他〕

成果として公表したN. M. Chu, et al., J. Am. Ceram. Soc., 105 (2022) 1622は、Best paper awardに選定された。さらに、D. Nguyen,et al, J. Appl. Phys., 130 (2021) 185901は、Edior's Pickに選ばれ、双方学界から高く評価された。

6	. 研究組織		
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	鈴木 達也	長岡技術科学大学・工学研究科・教授	
研究分担者	(Suzuki Tatsuya)		
	(70323839)	(13102)	
	南口誠	長岡技術科学大学・工学研究科・教授	
研究分担者	(Nanko Makoto)		
	(90272666)	(13102)	
研究分担者	Do T.M.Dung (T.M.Dung Do)	長岡技術科学大学・工学研究科・助教	
	(90638420)	(13102)	

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究協力者	グエン (Nguyen T.B.)	ベトナム原子力研究所	
研究協力者	グエン (Nguyen V.T.)	ハノイ工科大学	
研究協力者	藤田 善貴 (Fujita Yoshitaka)	日本原子力研究開発機構	
研究協力者	サラチ (Sarathi R.)	インド工科大学マドラス校	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関			
インド	インド工科大学マドラス校			
ベトナム	ベトナム原子力研究所	ハノイ工科大学		