研究成果報告書 科学研究費助成事業

今和 4 年 6月 5 日現在

機関番号: 12601
研究種目: 基盤研究(B)(一般)
研究期間: 2019 ~ 2021
課題番号: 19H02475
研究課題名(和文)デジタルホログラフィック顕微鏡を用いた鋼のせん断型変態組織の局所変形挙動の解明
研究理師夕(茶文)Observation of local deformation behavior of microstructure formed through
研充課題名(英文)Observation of rocal deformation behavior of microstructure formed through displacive transformation
研究代表者
井上 純哉(Inoue, Junya)
東京大学・生産技術研究所・教授
研究者番号:7 0 3 1 2 9 7 3
交付決定額(研究期間全体):(直接経費) 12,400,000円

研究成果の概要(和文):近年,金属材料の更なる高性能化を目指す上で不可欠となる極めて重要な技術として,結晶粒レベルで不均一な変形挙動の解析が注目されている。そのため,局所的な変形挙動の解明に向け, AFMやSEM/EBSD,TEMなどを用いた解析が広く用いられているものの,リアルタイム性と計測精度の両立には限界 があった。そこで本研究では,デジタルホログラフィック顕微鏡でリアルタイムに大量に取得した情報を元に, 高速度・高精度・高解像度に局所変形を再構築する革新的なシステムの構築を目指した。 その結果,Wavelet変換を用いた手法を構築し,表面起伏の微細な起伏を再現することを可能にした。

研究成果の学術的意義や社会的意義 鉄鋼材料の高機能化や高強度化の鍵として,近年マルテンサイト変態等の変位型相変態が盛んに研究されてい る。この様な組織形成を理解し,構造材料の長期的な信頼性を向上する上では,形成相やその周辺で生じる変形 挙動の解明が極めて重要である。特に,高強度化と高延性化の両立を目指しす上では,形成相の形態や体積率の 制御が重要であり,その最適化には異相界面や高強度相で生じるひずみの局所化挙動の理解が不可欠となってい る。本研究は,この様な変位型変態組織の形成過程や変形挙動を支配するメカニズムを解明する上で不可欠とな る,新たな計測手法を提供するものである。

研究成果の概要(英文): The analysis of heterogeneous deformation behavior at the grain level has been attracting attention, and considered as an important technology for achieving higher performance in metallic materials. Therefore, analysis using AFM, SEM/EBSD, TEM, etc. are widely used to elucidate local deformation behavior. There is, however, a limit to both real-time performance and measurement accuracy. Accordingly, in this study, we aimed to construct a new method to measure nano-scale changes in surface undulations caused by transformation strain and plastic deformation in real time. As a result, we developed a 3D shape reconstruction method using the Wavelet transform, and enabled the reproduction of fine surface undulations.

研究分野:データ駆動型材料科学

キーワード: デジタルホログラフィック顕微鏡 変位型変態 組織形成 局所変形挙動 Wavelet変換

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

近年,金属材料の更なる高性能化を目指す上で不可欠となる極めて重要な技術として,結晶粒 レベルで不均一な変形挙動の解析が注目されている。例えば,高機能化や高強度化の鍵として近 年盛んに研究されているマルテンサイト変態等の変位型相変態では,形成相やその周辺での変 形挙動の解明は組織形成の理解や材料の長期的な信頼性を向上する上では不可欠となっている。 また,高強度化と高延性化の両立を目指し様々な材料の開発が進められているが,その最適化に は異相界面や高強度相で生じるひずみの局所化挙動の理解が不可欠となっている。そのため,局 所的な変形挙動の解明に向け,AFMやSEM/EBSD,TEMなどを用いた解析が広く用いられ ているものの,リアルタイム性と計測精度の両立には限界がある。

2. 研究の目的

本研究では、変態ひずみや塑性変形により生じる表面起伏のナノスケールの変化をデジタル ホログラフィック顕微鏡でリアルタイムに大量に取得することで、高速度・高精度・高解像度に 局所変形を再構築する革新的なシステムの構築を目指した。

研究の方法

高精度・高解像度化の実現には、DHM システムのハードウェアとソフトウェアの両面からの 改善が不可欠となる。ハードウェアの面では、半導体レーザーの短波長化と高輝度化に伴う光学 系の抜本的な見直しが必要となる。また、ソフトウェア面では従来のフーリエ変換を用いた手法 に代わる新たな手法の構築が必要になる。そこで、2019 年度においては新たなハードウェアの 構築、2020 年度においては新たなソフトウェアの構築を行った。また、2021 年度においては、 構築した DHM システムの精度検証、並びにマルテンサイト変態やベイナイト変態時に生じる 微細な表面形状の変化をその場計測した。具体的な研究方法は以下の通りである:

① DHM システム・新規光学系の構築

現有の DHM システムでは,既存の光学顕微鏡内にレーザーを導入することでホログラフィ ック像を得る形式であったため,寸法精度の問題があり,レーザー光源からビームスプリッター を通して分岐されたレーザーは,光ファイバーを通して光学顕微鏡の鏡筒内に導入する方式を 採用していた。そのため,レーザー輝度の増加や短波長化に伴い,非線形光学の影響が増大し, 明確な干渉縞を取得することが困難となる問題が生じており,DHM の高速度化・高精度化・高 解像度化の実現の大きな妨げとなっていた。そこでここでは,光ファイバーを介さずにミラーだ けで導波を実現する新たな DHM 専用の光学系の構築を試みた。

DHM システム・新規 3 次元再構築プログラムの構築

従来,ホログラフィック像から3次元を再構築するには、フレネル変換式をフーリエ変換に より解く方法が広く用いられている。この場合、周波数空間においては干渉像強度を示す領域と 位相情報を含む領域が現れるが、この位相情報を含む領域を抽出することで実現されている。し かし、フーリエ変換を用いた手法で位相情報を含む周波数領域を抽出するためには、一般にはバ ンドパスフィルターを用いる必要がある。しかし、バンドパスフィルターを用いると、位相情報 に含まれる高周波成分も失われる事となる。一般に高周波成分には表面の微細な凹凸情報が含 まれており、結果として再現形状の解像度が低下することとなる。そこでここでは、機械学習を 用いた手法やウェイブレット変換を用いた手法を検討することで、新たな3次元再構築プログ ラムの構築を目指した。

③ 新規開発 DHM システムの精度検証

構築した DHM システムの精度検証のため,既存の表面起伏の測定手法である AFM や共焦点 レーザー顕微鏡との比較を行った。比較検討には原子レベルで平坦なシリコン基板と,予めマル テンサイト変態によって表面起伏が生じた低炭素鋼を用いた。また,リアルタイム性の確認のた め,ベイナイト変態ならびにマルテンサイト変態のその場計測も実施した。

4. 研究成果

DHM システム・新規光学系の構築

図1に新たに設計した DHM システムの光学系を示す。光学系による減衰やひずみを極力抑 制するため、ビームエクスパンダーや対物レンズ・チューブレンズを除き、全てミラーのみで構 成されている。レーザー光源としては高輝度のレーザーダイオードを用い、1/2 λ 波長板とビー ムスプリッターを用いて照射光と参照光の割合を自由に選択できる設計となっている。また、光 学系の微調整用に、それぞれ独立した光軸調整用光学系を用意すると共に、それぞれを外部に取

図2 DHM システムの光学系の全景

り出せる仕様となっている。図2に構築した DHM システムの光学系の全景を示す。用いたレー ザーダイオードは波長 405nm, 出力 40mW であるが,ファイバーやレンズを廃したことで,最 高出力で照射した場合においても明瞭な干渉縞を形成することが確認された。

DHM システム・新規 3 次元再構築プログラムの構築

様々な手法を検討した結果,ガボールウェーブレット変換(Gabor Wavelet Transform)を用 いた手法が、簡便に高精度に再構築データを取得できることが判明した。

DHM では、物体光と参照光が干渉した光の強度が撮像素子を通して取得される。つまり、取 得される画素の強度は以下の式で与えられる:

$$I(x, y) = |U_r(x, y) + U_o(x, y)|^2$$

(1)

 $= A_r^2 + A_o^2 + A_r A_o \exp[i\Delta\varphi_o(x, y)] + A_r A_o \exp[-i\Delta\varphi_o(x, y)]$ ここで, x, yは受光素子上の座標, I(x,y), U_r(x,y), U_o(x,y)はそれぞれ干渉光, 参照光, 物体光 の強度である。また、 A_r, A_o は参照光と物体光の振幅、 $\Delta \varphi_o(x, y)$ は相対位相値であり、以下の式 で与えられる:

$$\Delta \varphi_o(x, y) = \varphi_o(x, y) - \varphi_r(x, y) \tag{2}$$

ここで、 $\varphi_o(x,y)$ 、 $\varphi_r(x,y)$ はそれぞれ物体光と参照光の絶対位相である。FFTを用いた従来手法 では、周波数空間上で物体光のみが存在する領域を抽出することで、位相情報を抽出している。 つまり、マスキング関数を $M(f_x, f_y)$ とすると、位相情報を含んだホログラム $H(f_x, f_y)$ は、 (3)

 $H(f_x, f_y) = FT^{-1}[FT[I(x, y)]M(f_x, f_y)]$ となる。ここで、FT, FT⁻¹はそれぞれフーリエ変換と逆フーリエ変換演算子である。一方で、 GWT を用いた手法では、次式で与えられるガボールウェブレット母関数を用いた変換を用い る:

$$\Psi(x,y) = 1/\sqrt[4]{\pi}\sqrt{R}exp\left[-\left(R^2(x^2+y^2)\right)/2 + 2\pi i(x+y)\right]$$
(4)

ここで、 $R = \sqrt{2 \ln 2}$ である。母関数から平行移動、回転や伸縮の属性を加えると、ガボールウェ ブレット子関数集は以下の様になる:

$$\Psi_{s,\theta}\left(\mathbf{x},\mathbf{y},\mathbf{a},\mathbf{b}\right) = 1/s^2 \Psi\left((\mathbf{x}-\mathbf{a})/s,(\mathbf{y}-\mathbf{b})/s,\theta\right)$$
(5)

$$= 1/s^{2} \cdot \sqrt{R} / \sqrt[4]{\pi} \exp\{-(R^{2} [(x-a)^{2} + (y-b)^{2}])/(2s^{2}) + 2\pi i ((x-a)cos\theta + (y-b)sin\theta)/s\}$$

ここで, s (s > 0)は伸縮係数, θ は回転係数, (a, b)は干渉縞の測定位置(x, y)に対するシフト係数である。これらの係数を特定するとガボールウェブレット子関数(以下ウェブレット関数)が特定され,二次元上にウェブレット関数の形状が決まる。その結果,干渉縞と畳み込み計算を行うことで,ウェブレット係数 $W(s, \theta, a, b)$ が得られる:

$$W(s,\theta,a,b) = \prod I(x,y)\Psi_{s,\theta}(x,y,a,b)dxdy$$
(6)

干渉縞I(x, y)は0次項 W_1 ,物体光 W_2 ,共役像 W_3 の三項に分けることが可能であり、それぞれ以下の式で与えられる:

$$W_{1}Q = (A_{r}^{2} + A_{\theta}^{2})\exp\left(-\frac{2\pi}{D^{2}}\right)$$
(7)
$$W_{2} = QA_{r}A_{\theta}\exp[i\Delta\phi_{\theta}(x,y)]\exp\left\{-\frac{2\pi}{D^{2}}\left(\frac{\pi}{D^{2}} - 1\right) + 2\frac{\pi}{D^{2}}\left(1 - \cos(\alpha - \theta)\right)\right]\right\}$$
(8)

$$W_{2} = QA_{r}A_{o}exp[i\Delta\phi_{o}(x,y)]exp\left\{-\frac{\omega}{2}\left[\frac{\pi}{2}+1\right] + 2\frac{\pi}{\pi}\left[1-\cos(\alpha-\theta)\right]\right]$$
(9)

ここで、 $Q = 2 \cdot \sqrt[4]{\pi^3/R^3}$ であり、Tは干渉縞の間隔、 α は干渉縞と干渉平面のx軸と成す角度である。式(8)から分かるように、 s = Tと $\alpha = \theta$ を満たすとき、物体光成分 W_2 が最大値となり、 (a,b) = (x, y)において式(6)は以下のように変形できる:

$$W_{T,\alpha}(x,y) = Q\left(A_r^2 + A_0^2\right)exp\left(-\frac{2\pi}{R^2}\right) + QA_rA_bexp[i\Delta\varphi_b(x,y)] + QA_rA_bexp[-i\Delta\varphi_b(x,y)]exp\left(-\frac{3\pi}{R^2}\right)$$
(10)

ここで,
$$exp\left(-\frac{2\pi^2}{R^2}\right)$$
, $exp\left(-\frac{8\pi^2}{R^2}\right)$ は0に近い値となるため、次の近似式が得られる:
 $W_{T,\alpha}(x,y) \approx QA_rA_o exp[i\Delta\varphi_o(x,y)]$ (11)

以上より得られる位相情報(以下を相対位相値と呼ぶ)は、物体光の位相情報(以下を絶対位相値と呼ぶ)だけではなく、実際には光学システム由来の位相誤差も含まれている。そのため、従来は参照光成分 $\varphi_r(x,y)$ を適当に設定することで、位相シフト法¹⁸などにより相対位相値から物体光を再生することが一般となっている。しかし、再現計算の精度を上げるためには、実際の参照光に含まれる位相誤差を考慮し、絶対位相値を算出する方法が不可欠である。ここでは、参照光の位相成分の除去手法と、それに基づくGWTの実装を述べる。式(11)に式(2)を代入すると: $\varphi_o(x,y) = \varphi_N(x,y) + \varphi_r(x,y) - i \cdot \arctan[W_{T,a}(x,y)]$ (12)

 $\varphi_N(x,y)$ は光学システム由来の位相誤差である。式(12)に示す通り、物体光の絶対位相値は参照 光の位相値 $\varphi_r(x,y)$ とウェブレット変換結果 $W_{T,\alpha}(x,y)$ だけが関係する。ここで、試料表面が原子 レベルで平坦なリファレンス試料を考えた場合、物体光の絶対位相値は $\varphi_o(x,y) = k$ となり、次 式を得る:

$$k = \varphi_N(x, y) + \varphi_r(x, y) - i \cdot \arctan[V(x, y)]$$
(13)

ここでV(x, y)はリファレンス試料の干渉縞における GWT の計算結果である。つまり、式(12)と式(13)から、観察したい試料の物体光の絶対位相値 $\varphi_o(x, y)$ は以下の式で与えられることが分かる:

$$\varphi_o(x, y) = i \cdot \arctan[V(x, y)] - \arctan[W(x, y)] - k \tag{14}$$

リファレンス試料の位相値は定数であるため,実際の計算では無視している(*k* = 0)。以上より, 絶対位相値の取得は,単に同一条件で撮影したリファレンス試料のGWT計算結果を差し引くだ けで良いことが分かる。

③ 新規開発 DHM システムの精度検証

構築した三次元再構成システムによる再現精度の検証は、旧 DHM システムで取得したデータ に対し、FFT による従来手法と GWT を用いた新規手法を適用した結果、並びに AFM と共焦点レー ザー顕微鏡を用いて同軸で測定した結果を比較することで行った。AFM と共焦点レーザー顕微鏡 としては 01ympus 0LS4500 を用いた。図からも分かるように、従来手法と比較しても十分な精度 の改善が図られていることが分かる。これは、新規手法においては、光学系のひずみや光路内の

図3 シリコン基板を用いた3次元形状再現精度の検証(左)鳥瞰図(右)平面図 (a)FFTを用いた従来手法(b)GWTを用いた新規手法(c)共焦点レーザー顕微鏡(d)AFM

チリに起因するノイズをリファレンスデータにより消去できることによる。また,共焦点レーザ ー顕微鏡との比較においても,新規手法におけるノイズ・平坦性は優れており,微小な変化が重 要となる計測においては非常に有効な手段となりうることを示している。流石に AFM と同等の 計測精度は難しいものの,AFM で問題となるトレース間に生じるズレは発生せず,また計測のリ アルタイム性は、AFM とは比較にならない。

図4にマルテンサイト変態によって生じた表面起伏の断面形状を抽出した結果を示す。GWT を 用いた手法はAFM で取得した結果とほぼ同等の形状を抽出できていることが分かる。また、FFT を用いた手法では、表面の勾配が大きく変化する領域で、形状が大きく逸脱する傾向があること が分かる。これは、高周波成分が除去された影響と考えられる。

図5は既存のDHM システムでベイナイト変態の過程をその場取得したデータに対し,GWT を用いた手法を適用した結果である。ベイナイトブロックが形成することで生じる表面起伏は100nmに満たない微小な寄付機であるが、その形成過程が明瞭に捉えられていることが分かる。ベイナイトブロックの形成に伴い生じる表面起伏がマルテンサイトの現象論的解釈(PTMC)を用いた推定と良く一致するだけでなく、ベイナイトブロックの形成に伴い、ベイナイトブロック周辺の未変態オーステナイトにも大きな塑性変形が生じていることが示されている。

5. 主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 3件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名	4.巻
J. Inoue, S. Komine, R. Misaki, and K. Sekido	61
2.論文標題	5 . 発行年
Development of Digital Holographic Microscope for In-Situ Surface Relief Measurement of Low-	2019年
Carbon Steel	
3.雑誌名	6.最初と最後の頁
Materials Transactions	42-48
「掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.2320/matertrans.MT-MJ2019005	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Lin Chengrong、Sekido Kenji、Kim Ho-Heok、Inoue Junya	108
2 . 論文標題	5 . 発行年
In-situ Measurement of Bainitic Transformation Process using Digital Holographic Microscope	2022年
3.雑誌名	6 . 最初と最後の頁
Tetsu-to-Hagane	360~369
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.2355/tetsutohagane.TETSU-2021-128	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

4.巻
106
5 . 発行年
2020年
6.最初と最後の頁
488 ~ 496
査読の有無
有
国際共著
-

〔学会発表〕 計2件(うち招待講演 1件/うち国際学会 1件) 1.発表者名

井上純哉

2.発表標題

In-situ measurement of surface relief effect of displacive transformation in low-carbon steels

3 . 学会等名

Thermec 2021 (招待講演) (国際学会)

4 . 発表年

2020年~2021年

1.発表者名

井上純哉,小峯周平

2.発表標題

DHMを用いた低炭素マルテンサイト変態のその場観察

3.学会等名日本金属学会2019年秋季講演大会

4 . 発表年

2019年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6.研究組織

氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関