[Grant-in-Aid for Scientific Research (S)]

Broad Section B

Title of Project :Reconstruction of atmospheric carbon dioxide
concentration during the last 6 million years and the study
of the interaction between atmospheric carbon dioxide and
climate

YAMAMOTO, Masanobu

(Hokkaido University, Faculty of Environmental Earth Science, Associate Professor)

Research Project Number: 19H05595 Researcher Number: 60332475

Keyword : Climate change, Environmental change, carbon dioxide, global warming, greenhouse effect, ocean drilling

[Purpose and Background of the Research]

Ice cores have provided a highly valuable archive of past CO₂ levels spanning the past 800 ka. Beyond ice core records, marine sediment archives using foraminifera $\delta^{11}B$ and alkenone $\delta^{13}C$ proxies have been used for CO₂ reconstruction, but they do not yield high resolution records sufficient to resolve orbital-scale cycles. Blue ice provided spot data at 1 Ma and 2.7 Ma. There has been no continuous high resolution CO₂ record beyond 800 ka (Fig. 1).

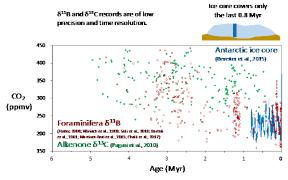


Fig. 1. Limitation of atmospheric CO₂ reconstruction.

In this study, we analyze the $\delta^{13}C$ of long-chain n-fatty acids ($\delta^{13}C_{FA}$) in sediments from International Ocean Discovery Program (IODP) Site U1445 on the Indian margin, Bay of Bengal, to generate a 1,700-year resolution record of CO₂ spanning the last 6 Myr. Based on reconstructed CO₂ record, we estimate climate sensitivity in the Pliocene, and understand the mechanisms of CO₂ variation and the interaction between CO₂ and climate.

[Research Methods]

We estimate CO₂ concentration from 6 ma to 1.5 Ma, estimate climate sensitivity in the Pliocene, discuss the mechanisms of CO₂ variability, the origin of glacial -interglacial cycles, and the cause of global warming around 5.6 Ma. Samples are the sediments taken from Site U1445 in the Indian margin of the Bay of Bengal. The δ^{13} C of long-chain n-fatty acids is analyzed to estimate the CO₂ concentration of the past. The δ^{18} O of benthic foraminifera is analyzed to create the age-depth model of Site U1445.

[Expected Research Achievements and Scientific Significance]

Interaction between CO_2 and climate is a key process in climate changes. However, robust CO_2 records are available only during the last 800 ka. The reconstruction of CO_2 concentration before 800 ka will be highly significant, enabling us to discuss the interaction between CO_2 and climate based on robust evidence.

Climate sensitivity is necessary to be determined to project future warming trend. The warmer Pliocene period (3 Ma) is now a target to determine climate sensitivity in the warmer Earth. The reconstruction of CO_2 concentration during the Pliocene should increase the accuracy of the climate sensitivity, which contributes to the projection of future climate.

Glacial-interglacial cycles became significant around 2.7 Ma. CO_2 decrease is a candidate of this trigger, but this is not proven by paleoclimte evidence. The high resolution CO_2 record enables us to discuss how carbon cycles were involved in the beginning of glacial-interglacial cycles.

Global warming occurred from 5.7 Ma to 5.5 Ma. This warming was a unique warming in the general cooling trend during the last 10 million years. The CO_2 record in this period enables us to discuss how CO_2 concentration was related to this global warming.

(Publications Relevant to the Project) None

[Term of Project] FY2019-2023

[Budget Allocation] 155,500 Thousand Yen

[Homepage Address and Other Contact Information]

https://geos.ees.hokudai.ac.jp/yamamoto/