4

研究成果報告書 科学研究費助成事業

		令和	5 í	年	6	月	12	日現在
幾関番号: 139	901							
研究種目: 基盤码	开究(C)(一般)							
研究期間: 2019 ·	~ 2022							
課題番号: 19 H	<pre>< 0 7 3 8 4</pre>							
研究課題名(和文	()リーリン欠失統合失調症患者モデルマウスを用いた発症>	×カニズ/	501	解明				
研究課題名(英文)Generation and analysis of novel ReIn-deleted mouse exonic ReIn deletion in schizophrenia	e model c	orre	espon	din	g to		
研究代表者								
森 大輔 (MOR	, DAISUKE)							
名古屋大学・脳	とこころの研究センター(医)・特任准教授							
研究者番号:0	0381997							

交付決定額(研究期間全体):(直接経費) 3,400,000 円

研究成果の概要(和文):CRISPR/Cas9法を用いて新規RELNエクソン欠失(Rein-dei)マウス系統を樹立した。 Reelinホモ欠失型表現型は、小脳萎縮、大脳層の形成不全、大脳reelinのタンパク質レベルの異常など既存の reelerマウスと同様であった。ヘテロ接合型Rein-delマウスにおけるリーリンの発現量は、野生型マウスの約半 分であった。逆に、小脳萎縮や形成不全のないヘテロ接合型Rein-delマウスの行動解析では、社会的相互作用試 験における社会的新奇性の異常が認められた。ホモ接合型Rein-delマウスの小脳培養では、in vitroでの再集合 形成と神経細胞移動が著しく変化した。

研究成果の学術的意義や社会的意義 多くの研究により報告されているReIn変異マウスの行動変化には、統合失調症に似た表現型が見られた。加えて ReIn欠失統合失調症患者を同定し、iPS細胞の樹立から神経細胞移動の方向性異常を見出すことができた。ReIn 欠失マウスとReIn欠失iPS細胞の相互解析からリーリン欠失を介した統合失調症の病態メカニズムを明らかに し、創薬につなげる礎となる可能性がある。

研究成果の概要(英文): The phenotype of homozygous ReIn-del mice was similar to that of reeler mice with cerebellar atrophy, dysplasia of the cerebral layers, and abrogated protein levels of cerebral reelin. The expression of reelin in heterozygous Reln-del mice was approximately half of that in wild-type mice. Conversely, behavioral analyses in heterozygous Reln-del mice without cerebellar atrophy or dysplasia showed abnormal social novelty in the three-chamber social interaction test. In vitro reaggregation formation and neuronal migration were severely altered in the cerebellar cultures of homozygous Reln-del mice.

研究分野:分子生物学

キーワード: 統合失調症 リーリン モデルマウス

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

リーリンは、多くの脳領域で発現する大型の細胞外マトリックスタンパク質である。発達段階に おいて、リーリンは主に Cajal-Retzius 細胞から分泌され、大脳皮質の神経細胞移動と層形成に 重要な役割を果たす。成人脳では、リーリンは GABA 作動性介在ニューロンから分泌され、シ ナプス形成能、樹状突起形態および認知機能に寄与する。これまでの研究で、RELN 変異を持つ 患者の裂頭症や小脳低形成が報告されており、この表現型は reeler マウスで観察されたものと 同様である。全長のリーリンタンパク質は約 400kDa の大きさで、リーリンリピートと呼ばれ る8つの繰り返しドメインを持ち、トロンボスポンジモチーフ3を持つディスインテグリンや メタロプロテアーゼなどのプロテアーゼによって、2つの特定の部位、リーリンリピート2と3 の間の部位(N-t 部位)とリーリンリピート6と7の間の別の部位(C-t 部位)で切断される。 これまでの研究で、リーリンの機能を評価するために、2 種類の Reln 変異マウスが使用された。 Jackson Reln ホモ接合体マウス (Relnrl-J) は 150kB のゲノム欠失を有し、Orleans Reln ホモ 接合体マウス (ReInrl-Orl) は 220bp の欠失を有する転写物を生成する。ReInrl-J マウスではリ ーリンタンパク質は産生されないが、ReInrl-Orl マウスでは C 末端の一部が切断された非分泌 性タンパク質が産生される。Relnrl-J マウスと Relnrl-Orl マウスでは、リーリンシグナルがほ とんどないため皮質の層状化と小脳萎縮が反転した。さらに、ヘテロ接合体 ReInrl-J (ReInrl-J/+) マウスは、記憶機能障害、不安、前パルス抑制(PPI)を示した。さらに、最近、我々は、 ヘテロ接合体 Relnrl-Orl (Relnrl-Orl/+) マウスが、社交性、運動協調性および不安の機能障害 を示したことを報告した。リーリンは、記憶の形成と保持に大きく寄与する皮質と海馬で重要な 役割を果たす。

遺伝学的研究により、RELN は統合失調症や自閉症スペクトラム障害などの精神疾患 との関連が示唆されている。具体的には、RELN の de novo または稀なミスセンスバリアント やエクソン欠失などの希少バリアントが統合失調症の危険因子として特定された。我々は最近、 主に日本人からなるコホートにおいて、高解像度アレイを用いたゲノムワイドなコピー数変異 解析を行い、RELN の新規エクソン欠失を有する統合失調症患者を特定した。さらに、この被験 者において血清中のリーリンの相対量が低いことを確認し、この被験者から人工多能性幹細胞 (iPSC)を樹立した。いくつかの臨床研究により、脳や末梢血におけるリーリン減少は精神障 害と関係しているかもしれないと示唆されている。

2. 研究の目的

多くの研究により報告されている Reln 変異マウスの行動変化は、統合失調症に似た表現型を 示す。しかし、ヒトにおけるリーリン減少による脳発達中の生物学的メカニズムに関する知見は、 まだ限られている。ヒト RELN 欠損 iPSC で観察される神経細胞移動の方向性異常を生体内で 調べるため、私たちは、統合失調症の日本人被験者から同定した特異的な Reln 欠損を持つ C57BL/6J 系統のマウス系統を作製し、Reln-del マウスと名付けた。行動解析の結果、ヘテロ接 合型 Reln-del マウスでは社交性に異常があることがわかりました。この新しい Reln-del マウス は、リーリンシグナルを理解し、リーリン欠失を介した統合失調症の病態メカニズムの解明を目 的とする

3. 研究の方法

CRISPR/Cas9 法を用いて新規 RELN エクソン欠失(Reln-del)マウス系統を樹立し、その分子 機構を明らかにした。その後、モデルマウスの一般行動試験や病理組織学的検査を行い、小脳顆 粒細胞の移動に関する表現型解析を実施した。

4. 研究成果

1)Reln 欠失モデルマウスの作製

CRISPR/Cas9 法によるゲノム編集によって RELN 欠失モデルマウスをした(図1)。一般行動解 析用の標準マウス系統 C57BL/6J 株を使った。ヒトとマウスの Reln 遺伝子の構造は高度に保存 されている。Reln-del マウスを作製するために、CRISPR 標的ガイド RNA2 本と、エクソン 52 に FLAG タグ配列と停止コドンを挿入するドナーDNA を設計した。2 種類のガイド RNA をマウス神経 芽細胞腫細胞株 Neuro2a に一過性にトランスフェクトしたところ、#4 ガイド RNA が T7E1 アッセ イで最も強い切断活性を示すことがわかった。MIT が支援する CRISPR Design ツール (http://crispr.mit.edu/)を用いて#4 ガイド RNA のオフターゲット効果の可能性を検討した ところ、マウスコード領域全体で3 塩基対以下のミスマッチによる疑似配列が存在しないこと を確認した(補足表1)。Crispr-RNA として#4 ガイド RNA を化学合成し、チャールズリバー社で 繁殖させた C57BL/6J マウスの受精卵 171 個に tracr-RNA、Cas9 タンパク質、ドナーDNA を共微 量注入し、2 細胞期まで培養させた。次に、119 個の卵を仮妊娠マウスの卵管に移植したところ、 18 匹の子が誕生した。その結果、ポリメラーゼ連鎖反応(PCR)クローニングにより、設計通り 2) Reln-del マウスの組織学的解析

Reln-del マウスの組織学的変化を検討した。ホモ接合型 Reln-del マウスのヘマトキシリン/ エオシン染色した脳切片は、重度の脳奇形を示した(図 2)。具体的には、典型的なリーラー表 現型の一つである小脳萎縮、脳室拡大、脳異形成が顕著であった。また、海馬の奇形、歯状回と 顆粒層の崩壊が観察された。一方、ヘテロ接合型 Reln-del マウスでは、ホモ接合型 Reln-del マ ウスのような重度の脳奇形は見られなかった。

3) Reln-del マウスの行動学的解析(表1)

Reln 変異は、統合失調症や自閉症スペクトラム障害など、いくつかの精神疾患のリスクファ クターである。そこで、Reln-del マウスが統合失調症の関連モデルであるかどうかを判断する ために、以下の10の行動テストを用いてグローバルな行動解析を行った:運動量、ロータロッ ド、オープンフィールド、高架式プラス迷路(EPM)、社会的相互作用、マーブル埋没、PPI、Y迷 路、新規物体認識(NOR)、恐怖条件付けテスト。

ホモ接合体 Reln-del マウスのほぼすべてが低形成で成体への到達が困難であったため、すべての行動解析にヘテロ接合体 Reln-del マウスを使用した。また、我々の研究の基礎となった日本人のオリジナル被験者は、ヘテロ接合の Reln 欠失を有していた。

まず、ホモ接合体の Reln 欠損マウスでは、重度の協調運動障害と小脳の萎縮が見られ、運動 機能、感情、認知機能に変化を与える可能性があるため、ヘテロ接合体の Reln 欠損マウスの運 動機能全般について評価した。ヘテロ接合体 Reln-del マウスは、ロコモータテストとロータロ ッドテストにおいて、正常な運動量と協調運動を示した。これらのデータは、運動機能が正常な ヘテロ接合体 Reln-del マウスの情動・認知機能を評価できることを示すものである。

以前の研究で、ヘテロ接合体 Reler マウスは不安が減少することが報告されている。そこで、 オープンフィールド試験と EPM 試験で不安を評価した。一般に、WT マウスはオープンフィール ド試験で円の中心よりも周辺にいる時間が長く、EPM 試験では円の中心や開いた腕がマウスの不 安要素であることから、開いた腕よりも閉じた腕を好んだ。重要なことは、両試験において WT マウスと Reln-del マウスの間に有意差がなかったことである。不安と不合理な行動を調べるた めに、ビー玉埋没テストを行ったところ、Reln-del マウスは正常な行動を示すことがわかった。

社会的行動や感覚運動ゲート機能の障害は、統合失調症の主症状である。ヘテロ接合体 Relndel マウスのこれらの点を調べるために、3 室社会的相互作用試験と PPI 試験を実施した。WT マ ウスとヘテロ接合型 Reln-del マウスでは、慣れや社会性セッションに有意な差は見られなかっ た。社会的新規性セッションでは、WT マウスは見慣れたマウスよりも新規マウスを有意に好ん だ。逆に、ヘテロ接合体 Reln-del マウスは見知らぬ人 1、2 のどちらにも同じ興味を示した。 PPI テストでは、ヘテロ接合体 Reln-del マウスは WT マウスと同様の表現型を示した。この違い は、WT マウスとヘテロ接合体 Reln-del マウスのオープンフィールド、EPM、NOR テストで差がな かったことから、見知らぬマウスに対する注意力が低いためと考えられるが、見知らぬマウスに 対する不安や何らかの認知はない。さらにヘテロ接合体 Reln-del マウスでは、Y 迷路および恐 怖条件付け試験における記憶機能に有意な表現型は見られなかった。

図1 Reln 欠失マウスの作製

図2 Reln 欠失マウスの組織病理学的解析(HE 染色)

	Sawahata et al., 2019 (Present study)	Sobue <i>et al.</i> (2018) ¹⁷	Lalonde et al. (2004 ³³	Salinger et al. (2003 ³⁴	Qiu <i>et al.</i> (2006) ⁵	Sakai et al. (2016) ³¹
Mutant mice strains	Reln-del (C57BL/6)	Orleans hetero	Orleans homo	Jackson hetero	Jackson hetero	∠C-KI (C57BL/6
(Background)		(BALB/C)	(BALB/C)	(B6C3Fe)	(B6C3Fe)	
Age, sex	10–19 weeks, male/female	10-15 weeks, male/female	12 weeks, male	10 weeks, male	6 weeks, male	11 weeks, male
Stationary beams	NA	NA	\downarrow	NA	NA	NA
Acoustic responsiveness	NA	NA	NA	NA	NA	NA
Wire hang latency	NA	NA	NA	NA	NA	\downarrow
Locomotor activity	=	=	1	NA	NA	NA
Open field	=	Ť	1	=	=	1
Elevated plus maze	=	=	Ļ	NA	=	1
Tail suspension test	NA	NA	NA	NA	NA	=
Porsolt forced swim test	NA	NA	NA	NA	NA	=
Y-maze	=	=	NA	NA	NA	=
Barnes maze test	NA	NA	NA	NA	NA	=
T-maze	NA	NA	=	NA	NA	↓ (Working memory)
Novel object recognition	=	=	NA	1	NA	NA
Social interaction test	(Social novelty)	1	NA	*	NA	
Rotarod test	=	Ť		NA	=	Ť
Fear conditioning test	=	=	NA	=	(Context)	=
Water maze test	NA	NA	T	NA	=	NA
Prepulse inhibition	=	↑ (Acoustic response)	NA	=	⊥ (82 dB)	=
MK801-induced hyperlocomotion	NA	=	NA	NA	NA	NA
METH-induced hyperlocomotion	NA	\downarrow	NA	NA	NA	NA

表1 Reln 欠失モデルマウスの一般行動表現型解析

5.主な発表論文等

〔雑誌論文〕 計2件(うち査読付論文 2件/うち国際共著 0件/うちオープンアクセス 2件)	
1.著者名 Tsuneura, Y. Sawahata, M. Itoh, N. Miyajima, R. Mori, D. Kohno, T. Hattori, M. Sobue, A. Nagai, T. Mizoguchi, H. Nabeshima, T. Ozaki, N. Yamada, K.	4.巻 1144
2.論文標題 Analysis of Reelin signaling and neurodevelopmental trajectory in primary cultured cortical neurons with RELN deletion identified in schizophrenia	5 . 発行年 2021年
3.雑誌名 Neurochem Int	6 . 最初と最後の頁 -
掲載論文のDOI(デジタルオプジェクト識別子) 10.1016/j.neuint.2020.104954	査読の有無 有
オープンアクセス オープンアクセスとしている(また、その予定である)	国際共著
1. 著者名 Sawahata Masahito、Mori Daisuke、Arioka Yuko、Kubo Hisako、Kushima Itaru、Kitagawa Kanako、 Sobue Akira、Shishido Emiko、Sekiguchi Mariko、Kodama Akiko、Ikeda Ryosuke、Aleksic Branko、 Kimura Hiroki、Ishizuka Kanako、Nagai Taku、Kaibuchi Kozo、Nabeshima Toshitaka、Yamada Kiyofumi、Ozaki Norio	4.巻 74
2.論文標題 Generation and analysis of novel ReIn-deleted mouse model corresponding to exonic ReIn deletion in schizophrenia	5 . 発行年 2020年
3.雑誌名 Psychiatry and Clinical Neurosciences	6 . 最初と最後の頁 318~327
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無

有

国際共著

10.1111/pcn.12993

オープンアクセス

〔学会発表〕 計1件(うち招待講演 0件/うち国際学会 1件)

1.発表者名

Daisuke Mori, Takashi Hirao, Ryosuke Ikeda, Yuko Arioka, Itaru Kushima, Norio Ozaki

オープンアクセスとしている(また、その予定である)

2 . 発表標題

3q29 欠失統合失調症モデルマウスの活動リズムの解析

3 . 学会等名

日本神経科学学会(国際学会)

4 . 発表年 2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況