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Construction of articulatory movement database, normalization of databases, and
speech synthesis based on the database

Katsurada, Kouichi
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We developed (1) a speech synthesis system from EMA data, (2) a speech
synthesis system from rtMRI data, and built (3) an articulatory movement database using EMA. The
speech synthesis system from EMA data is constructed for multiple speakers using LSTM and D-vector,
and we confirmed it can generate sufficient synthesized sounds, especially for speaker-close
synthesis. For speech synthesis from rtMRI data, we used transposed convolution which interpolates
time series data, and the results showed the quality improved when the stride size is increased. As
for articulatory database, we have completed the recording of articulatory movement data for seven
persons, and IPA assignment has been completed for one of them.
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