研究成果報告書 科学研究費助成事業

今和 3 年 6 月 1 4 日現在 機関番号: 11301 研究種目: 若手研究 研究期間: 2019~2020 課題番号: 19K15666 研究課題名(和文)錯イオンの機能性に基づく水素化物固体電解質の新規物性開拓 研究課題名(英文)Development of novel properties of hydride solid electrolytes based on functionality design of complex anions 研究代表者 金 相侖 (Kim, Sangryun) 東北大学・金属材料研究所・助教 研究者番号:20801442

交付決定額(研究期間全体):(直接経費) 3.300.000円

研究成果の概要(和文):本研究では、錯イオンの分子レベルでの共存による物性設計指針の構築および構造と物性の相関解明により、導電性と安定性の両側面の高機能性を兼ね備える錯体水素化物の創成に取り組んだ。 [CB9H10] - 、[CB11H12] - 、[B12H12]2 - などの様々な錯イオンを有する材料を合成し、その構造と特性を調べる ことで、錯体水素化物の固溶領域、固溶とイオン導電特性の相関、電気化学特性を明らかにした。

研究成果の学術的意義や社会的意義 錯体水素化物を固体電解質として利用する研究は未踏分野と言ってよく、材料物性、その機構解明、デバイス実 証などの様々な課題がある。そこで本研究では、「錯イオンの分子レベルの共存化による新規材料物性の創出」 という固体電解質材料の新たな指導原理を提案している。また、固体電解質研究の主流となっている酸化物や硫 化物とは異なる物性を実現し、高い潜在性を持ちながらも蓄電池材料としての認識が限定的であった錯体水素化 物の学術的・社会のしてたちる。 領域を切り拓くものと期待される。

研究成果の概要(英文): Complex hydrides have recently received much attention as promising solid electrolyte systems for all-solid-state batteries, because of the high lithium ion conductivity of their high-temperature (high-T) phases, excellent stability against a lithium metal anode, and a highly deformable nature. However, the superionic conductivity of complex hydrides is achieved in only a few materials; therefore, an understanding of the material factors involved in the formation of the high-T phase at room temperature and experimental demonstration of their battery applications are required. In this study, I report the solid - solution region of complex hydrides, the relationship between

the solid solution and the ionic conduction, and the electrochemical properties as a solid electrolyte for all-solid-state batteries.

研究分野: 固体化学、固体イオニクス、電気化学、

キーワード: 超イオン導電 水素化物 固体電解質 全固体電池

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1. 研究開始当初の背景

錯体水素化物は水素貯蔵材料として多くの研究が進められてきた材料であるが、近年では新たな応用領域として全固体電池の固体電解質材料としての利用が注目されている(R. Mohtadi, S. Orimo, *Nat. Rev. Mater.*, 2 (2016) 16091)。特にホウ素と水素が籠状に結合した錯イオン([B12H12]²⁻、 [CB11H12]²⁻など)とリチウムなどの陽イオン間のイオン結合によって形成されるクロソ系錯体水素化物は、温度上昇に従い構造無秩序高温相への相転移が進行すると共に、リチウムイオン導電率が急増し100 °C以上では液体電解質に匹敵する超イオン導電率を示す。一方で、錯イオンは中心原子と水素間の強固な共有結合により形成されるため、原子置換・欠損のような従来の構造制御法によっては、固体電解質のイオン輸送に必要とされるイオン導電特性の物性開拓が困難である。また、全固体電池のエネルギー密度・寿命のデバイス特性を決定づけるのは固体電解質の電気化学的安定性であるにも関わらず、錯体水素化物の電気化学安定性の向上に関する報告例は皆無である。すなわち、錯体水素化物の固体電解質としての物性開拓のためには、その構造と特性を自由自在に制御できる新しい材料設計指針が求められる。

2. 研究の目的

本研究では、錯イオンの分子レベルでの共存による物性設計指針の構築および構造と物性の 相関解明により、導電性と安定性の両側面の高機能性を兼ね備える錯体水素化物の創成に取り 組む。具体的には、錯イオンの機能性を軸とする材料設計により、個々の錯イオンでは実現でき ない、超イオン導電性高温相の室温安定化、格子サイズ・価数などのの構造制御により、錯体水 素化物固体電解質の超イオンオン導電率と高電気化学安定性を達成する。

3. 研究の方法

以下に示す研究により、複数の錯イオンの固溶法および錯イオンの固溶による構造無秩序高 温相の室温安定化法の確立を行う。

(1) 錯イオンの固溶効果:Li(CB₉H₁₀)-Li(CB₁₁H₁₂)-Li₂(B₁₂H₁₂)擬似三成分系の合成により、固溶領 域、固溶による高温相の室温安定化の効果、得られた材料のイオン導電特性を評価。

(2) 液相合成法および熱力学安定性:(1)の中で優れたイオン導電特性を示した材料において、溶 媒を用いた新たな液相合成法の検討を行うとともに、熱処理による熱力学安定性を調査。

(3) 全固体電池特性:得られた材料の固体電解質としての適用可能性を検討するために、リチウム負極との化学/電気化学安定性および全固体電池の電気化学特性を評価。

以下に測定・評価方法を纏める。

(1) 錯イオンの固溶効果

Li(CB₉H₁₀) (Katchem Ltd.)、Li(CB₁₁H₁₂) (Katchem Ltd.)、Li₂(B₁₂H₁₂) (Katchem Ltd.)を任意のモル 比で秤量、混合した後、400 rpm にて 20 h ボールミリングを行うことにより目的の試料を合成し た。合成前後の構造変化を X 線回折法で評価した。リチウムイオン導電率は金電極を使用した 交流インピーダンス法により測定した。

(2) 液相合成法および熱力学安定性

固相法で合成した試料の中で最も高いリチウムイオン導電率を示した 0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)を用いて、ドライルームで露点を制御しながら暴露試験を行い、試料の水分安定性を調べた。液相合成では、モル比 7:3 のLi(CB₉H₁₀)とLi(CB₁₁H₁₂)を水溶媒に溶解 させた後、溶媒除去と熱処理により 0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)を合成した。熱処理前後の構造 をX線回折法で評価した。

(3) 全固体電池特性

負極材料として、金属リチウムを用いた。錯体水素化物固体電解質と金属リチウム間のリチウム溶解析出反応の安定性を定電流測定により調べた。電池特性の評価は、正極に TiS2、固体電解質に錯体水素化物、負極に金属リチウムを用いたセルで行った.

4. 研究成果

(1) 錯イオンの固溶効果

図1にLi(CB₉H₁₀)-Li(CB₁₁H₁₂)-Li₂(B₁₂H₁₂)擬似三成分系錯体水素化物の錯イオンの共存(固溶) 領域、固溶と相転移温度の関係、固溶とイオン導電特性の関係を示す。

図1.Li(CB₉H₁₀)-Li(CB₁₁H₁₂)-Li₂(B₁₂H₁₂)擬似三成分系錯体水素化物の錯イオンの共存(固溶)領域、固溶 と相転移温度の関係、固溶とイオン導電特性の関係。

錯イオンの共存(固溶)領域および固溶による相転移温度の低下は、Li(CB₉H₁₀)に近い組成に
おいて、顕著であった。中でも最も優れたイオン導電特性を示した(1-x)Li(CB₉H₁₀)-xLi(CB₁₁H₁₂)
は、その構造によって主に3つの領域に分類された。低x領域(0.1 ≤ x ≤ 0.4)では一部の[CB₉H₁₀]⁻
が[CB₁₁H₁₂]⁻に、高x領域(0.7 ≤ x ≤ 0.9)では一部の[CB₁₁H₁₂]⁻が[CB₉H₁₀]⁻に置換された相が得られ

た。また、低x領域では $Li(CB_9H_{10})$ の 高温相が、高x領域では $Li(CB_1H_{12})$ の 低温相が主相であり、高温相の安定化 における固溶の効果は低x領域でより 顕著であることから、この効果は母構 造内の錯イオンとそれに置換される 錯イオンの構造に大きく依存するこ とが示唆される。さらに、低x領域の $0.1 \le x \le 0.3$ では、xの増加により導電 率が向上し、それ以降($0.3 \le x \le 0.4$)減 少した。 $0.1 \le x \le 0.3$ の導電率向上は

固溶による Li(CB₉H₁₀)の高温相の形成、 $0.3 \le x \le 0.4$ の導電率減少は固溶限界による Li(CB₁₁H₁₂)の低温相の形成に起因すると考えられる.以上の結果から, (1-x)Li(CB₉H₁₀)-xLi(CB₁₁H₁₂)擬似二成分系錯体水素化物は, x = 0.3 で最も高いリチウムイオン導電率を示した(図 2)。

(1-y)Li(CB₉H10)-yLi₂(B₁₂H₁₂)擬似二成分系錯体水素化物では、低y値(0.1 $\leq y \leq$ 0.4)において、 Li(CB₉H₁₀)の構造を有する固溶体が得られた。上記領域では、Li(CB₉H₁₀)中の[CB₉H₁₀]⁻錯イオン が[B₁₂H₁₂]²⁻錯イオンに置換された相が形成された。また、yが増加すると、固溶量が増加すると ともに、高温相の低温安定化が促進された。特に、y = 0.3、0.4 において、室温において高温相 が安定化され、液体電解質並みの超リチウムイオン伝導率が得られた。一方で、錯イオンの価 数が増加すると、イオン伝導の活性化エネルギーが低下し、イオン導電率が低下した。以上の理 由から、(1-y)Li(CB₉H10)-yLi₂(B₁₂H₁₂)は(1-x)Li(CB₉H₁₀)-xLi(CB₁₁H₁₂)より低いイオン導電率を示 した。

(2) 液相合成法および熱力学安定性

最 も 高 い イ オ ン 導 電 率 を 示 し た 0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)を目的物質とし た。0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)を用いた暴 露試験では、水和反応による相分離が進行す るものの、試料の分解は確認されなかった。 また、暴露させた試料を熱処理することによ り、暴露前試料と同様の空間群(六方晶、P3₁c) を有する試料が得られた。

以上の結果から、上記試料は熱力学的に安 定であり、水和された試料は熱処理により結 晶水除去と固溶反応が同時に達成できるこ とが示唆される。これらの結果に基づいて行

図 3. Li(CB₉H₁₀), 固相法と液相法で合成した 0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)のXRD 測定結果。

なった液相合成では、Li(CB₉H₁₀)とLi(CB₁₁H₁₂)を水溶媒へ溶解後、溶媒除去と熱処理を行うこと により、超リチウムイオン導電率を示す 0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)が得られることが明らかに なった(図 3)。

(3) 全固体電池特性

正極に TiS2を用いた全固体電池を作製し、特性を評価した。

まず、熱処理により、TiS2と錯体水素化物固体電解質の化学的反応性を調べた。100 ℃ で熱処 理を行った結果、TiS2と錯体水素化物固体電解質の変化は見られず、これらの電極と固体電解質 は化学的に安定性であることが明らかになった。

電池作製にあたっては、0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)固体電解質層のみを一軸成形した後、正 極複合体(TiS₂と0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂))とリチウム負極を加えて一軸成形することによ り、TiS₂/0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)/Li全固体電池を作製した(図4(a))。

0.1C (1C は、1 時間で充電または放電が可能な条件を表す)のレートで充放電試験を行ったところ、2 サイクル目の放電容量は TiS₂ 正極の理論容量の 96.4%に相当する 230.5 mAh g⁻¹ であった (図 4(b))。また、0.2C のレートで、40 サイクルまで初期サイクルの 73%以上の放電容量が維持された。さらにレートを上げて、1C の条件下で充放電試験を行った結果、200 サイクル後でも 160 mAh g⁻¹以上の放電容量が維持された (図 4(c))。全ての電池試験におけるクーロン効率

図 4. (a)全固体電池 TiS₂/0.7Li(CB₉H₁₀)-0.3Li(CB₁₁H₁₂)/Li の概略図。b. 0.1C での充放電曲線。c. 1C での放 電容量とクーロン効率のサイクル特性。

は、2 サイクル目以後はほぼ 100%であった。このことから、サイクル動作中に顕著な副反応が 起こっていないことが示唆される。

5.主な発表論文等

〔雑誌論文〕 計12件(うち査読付論文 12件 / うち国際共著 4件 / うちオープンアクセス 1件)

1.著者名 Sau Kartik、Ikeshoji Tamio、Kim Sangryun、Takagi Shigeyuki、Akagi Kazuto、Orimo Shin-ichi	4 . 巻 3
2.論文標題	5 . 発行年
Reorientational motion and Li+-ion transport in Li2B12H12 system: Molecular dynamics study	2019年
3. 雑誌名	6.最初と最後の頁
Physical Review Materials	75402
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1103/PhysRevMaterials.3.075402	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Kisu Kazuaki, Kim Sangryun, Oguchi Hiroyuki, Toyama Naoki, Orimo Shin-ichi	436
2.論文標題	5 . 発行年
Interfacial stability between LiBH4-based complex hydride solid electrolytes and Li metal anode	2019年
for all-solid-state Li batteries	
3.雑誌名	6.最初と最後の頁
Journal of Power Sources	226821 ~ 226821
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1016/j.jpowsour.2019.226821	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Oguchi Hiroyuki, Kim Sangryun, Maruyama Shingo, Horisawa Yuhei, Takagi Shigeyuki, Sato Toyoto,	1
Shimizu Ryota, Matsumoto Yuji, Hitosugi Taro, Orimo Shin-ichi	
2.論文標題	5 . 発行年
Epitaxial Film Growth of LiBH4 via Molecular Unit Evaporation	2019年
3.雑誌名	6.最初と最後の頁
ACS Applied Electronic Materials	1792 ~ 1796
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1021/acsaelm.9b00350	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4 . 巻
Kim Sangryun、Harada Kentaro、Toyama Naoki、Oguchi Hiroyuki、Kisu Kazuaki、Orimo Shin-ichi	43
2 . 論文標題 Room temperature operation of all-solid-state battery using a closo-type complex hydride solid electrolyte and a LiCoO2 cathode by interfacial modification	5 . 発行年 2020年
3 . 雑誌名	6 . 最初と最後の頁
Journal of Energy Chemistry	47~51
掲載論文のD0I(デジタルオプジェクト識別子)	査読の有無
10.1016/j.jechem.2019.08.007	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	

1.著者名	4.巻
Hirscher Michael et al.	⁸²⁷
2 . 論文標題	5 . 発行年
Materials for hydrogen-based energy storage: past, recent progress and future outlook	2020年
3.雑誌名	6 . 最初と最後の頁
Journal of Alloys and Compounds	153548 ~ 153548
掲載論文のDOI(デジタルオブジェクト識別子) 10.1016/j.jallcom.2019.153548	 査読の有無 有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する
1.著者名	4.巻
Kazuaki Kisu、Sangryun Kim、Ryuga Yoshida、Hiroyuki Oguchi、Naoki Toyama、Shin-ichi Orimo	-
2 . 論文標題 Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance	5 . 発行年 2020年
3 . 雑誌名	6 . 最初と最後の頁
Journal of Energy Chemistry	-
掲載論文のDOI(デジタルオブジェクト識別子) 10.1016/j.jechem.2020.03.069	 査読の有無 有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
1.著者名	4.巻
Kisu Kazuaki、Kim Sangryun、Inukai Munehiro、Oguchi Hiroyuki、Takagi Shigeyuki、Orimo Shin-ichi	3
2.論文標題	5 . 発行年
Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor	2020年
3 .雑誌名	6 . 最初と最後の頁
ACS Applied Energy Materials	3174-3179
掲載論文のDOI(デジタルオブジェクト識別子) 10.1021/acsaem.0c00113	 査読の有無 有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	

1.著者名 Abdel El Kharbachi、Julia Wind、Amund Ruud、Astrid B. Hogset、Magnus M. Nygard、Junxian Zhang、 Magnus H. Sorby、Sangryun Kim、Fermin Cueva、Shin-ichi Orimo、Maximilian Fichtner、Michel Latroche、Helmer Fjellvag、Bjorn C. Hauback	4.巻 22
2.論文標題	5 . 発行年
Pseudo-ternary LiBH4-LiCI-P2S5 system as structurally disordered bulk electrolyte for all- solid-state lithium batteries	2020年
3.雑誌名	6.最初と最後の頁
Physical Chemistry Chemical Physics	13872-13879
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1039/D0CP01334J	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Sangryun Kim、Kazuaki Kisu、Shigeyuki Takagi、Hiroyuki Oguchi、Shin-ichi Orimo	3
2 . 論文標題 Complex Hydride Solid Electrolytes of the Li(CB9H10) – Li(CB11H12) Quasi–Binary System: Relationship between the Solid Solution and Phase Transition, and the Electrochemical Properties	5 . 発行年 2020年
3.雑誌名	6.最初と最後の頁
ACS Applied Energy Materials	4831-4839
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1021/acsaem.0c00433	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	
1.著者名	4.巻
Sangryun Kim、 Kazuaki Kisu、Shin-ichi Orimo	¹¹
2 . 論文標題 Stabilization of Superionic-Conducting High-Temperature Phase of Li(CB9H10) via Solid Solution Formation with Li2(B12H12)	5 . 発行年 2021年
3.雑誌名	6 . 最初と最後の頁
Crystals	330
掲載論文のDOI(デジタルオブジェクト識別子) 10.3390/cryst11040330	

オープンアクセス

1.著者名	4.巻
Kazuaki Kisu, Sangryun Kim, Takara Shinohara, Kun Zhao, Andreas Zuttel, Shin ichi Orimo	11
2.論文標題	5 . 発行年
Monocarborane cluster as a stable fluorine free calcium battery electrolyte	2021年
3.雑誌名	6.最初と最後の頁
Scientific Reports	7643
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1038/s41598-021-86938-0	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する

オープンアクセスではない、又はオープンアクセスが困難

国際共著

該当する

1.著者名	4 . 巻
Kartik Sau、Tamio Ikeshoji、Sangryun Kim、Shigeyuki Takagi、Shin-ichi Orimo	33
2 . 論文標題 Comparative Molecular Dynamics Study of the Roles of Anion-Cation and Cation-Cation Correlation in Cation Diffusion in Li2B12H12 and LiCB11H12	5 . 発行年 2021年
3 . 雑誌名	6 . 最初と最後の頁
Chemistry of Materials	2357-2369
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1021/acs.chemmater.0c04473	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計5件(うち招待講演 1件/うち国際学会 0件)

1.発表者名
金相侖、木須一彰、松浦豊、野口敬太、野上玄器、折茂慎一

2 . 発表標題

錯体水素化物超リチウムイオン伝導体の水分安定性と水溶媒を用いた液相合成

3.学会等名電気化学会第87回大会

4.発表年 2020年

1.発表者名
金相侖、木須一彰、松浦豊、野口敬太、野上玄器、折茂慎一

2 . 発表標題

錯体水素化物固体電解質の水分安定性と水溶媒を用いた液相合成

3.学会等名金属学会 2020年春期(第166回)講演大会

4.発表年 2020年

1.発表者名 金相侖

2.発表標題

水素化物超リチウムイオン伝導材料の開発と次世代エネルギーデバイスへの応用

3 . 学会等名

金属学会 2019年秋期(第165回)講演大会(招待講演)

4 . 発表年 2019年

1.発表者名

金相侖、木須一彰、松浦豊、野口敬太、野上玄器、折茂慎一

2.発表標題

Li(CB9H10)-Li(CB11H12)系固体電解質の合成、水分安定性、電気化学特性

3 . 学会等名

第61回電池討論会

4.発表年 2020年

1.発表者名

金相侖、木須一彰、髙木成幸、折茂慎一

2 . 発表標題

Li (CB9H10) - Li (CB11H12)系錯体水素化物の合成と電気化学特性

3.学会等名
金属学会 2021年春期

特許、2020-192973

4 . 発表年

2021年

〔図書〕 計2件

1 . 著者名 金相侖、木須一彰、折茂慎一	4 . 発行年 2020年
2. 出版社	5.総ページ数
NTS	
3.書名	
全固体電池の界面抵抗低減と作製ブロセス、評価技術(第4章,第5節)	
	1

1.著者名	4 . 発行年
金相侖、折茂慎一	2019年
2.出版社	5.総ページ数
シーエムシー出版	-
3.書名	
全固体リチウム電池の開発動向と応用展望(第1編,第9章)	

<u>〔出願〕 計4件</u> 産業財産権の名称 発明者 権利者 LiCB9H10の高温相を含むイオン伝導体およびその製造方法 金相侖、木須一彰、 同左 新茂慎一、野口敬 太、野上玄器、松浦 産業財産権の種類、番号 出願年 国内・外国の別 特許、2020-24326 2020年 国内 産業財産権の名称 発明者 権利者 正極材料および二次電池 金相侖、折茂慎一ら 同左 産業財産権の種類、番号 出願年 国内・外国の別 特許、2020-038515 2020年 国内 産業財産権の名称 発明者 権利者 金相侖、折茂慎一ら 分散液の製造方法、シートの製造方法、および、二次電池の製造方法 同左 産業財産権の種類、番号 出願年 国内・外国の別

2020年

国内

産業財産権の名称 二次電池の製造方法	発明者 金相侖、折茂慎一ら	権利者同左
産業財産権の種類、番号	出願年	国内・外国の別
特許、2020-192974	2020年	国内

〔取得〕 計0件

〔その他〕

<u>6</u>.研究組織

-

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------