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Alzheimer®s disease (AD) is a serious threat worldwide, in which oxidative
stress is thought to play an important role in the pathological development. In this study, the AD
cell model by using PC12 neuronal cells was established, the intracellular intact lipids and
oxidized lipids were detected by LC/MS, and the contents of the molecular species were determined.
Besides, cell morphology, viability, and reactive oxygen species levels were evaluated. As a result,

lipid hydroperoxide molecular species accumulated with the increased H202 concentration, suggesting
the oxidative damage in the molecular level. Moreover, the amounts of functional lipids including
plasmalogens and cardiolipins were decreased along with the increased H202 concentration. This study
showed that the lipid metabolism disorders occurred in AD model neurons, which suggested a close
association between lipid hydroperoxides and AD.
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Alzheimer’ s disease (AD) is a progressive neurological disorder characterized by an
accumulation of extracellular amyloid-3 , formation of intracellular neurofibrillary
tangles, neuroinflammation, brain atrophy, and a gradual progression of memory loss.
There are 46.8 million people worldwide living with AD or other dementia in 2015, and
this number will double every 20 years. Besides, AD is associated with an estimated
health-care cost of US$172 billion per year. Currently, AD has become a terrible health
problem, bringing medical trouble and financial burden to the whole society.

For pathological mechanism, there has been increasing evidences suggest that free
radical-mediated oxidation of biological substrates is a key feature of AD pathogenesis.
These reactive oxygen species (R0S), such as superoxide, peroxide, and hydroxyl radical,
can be generated due to exogenous factors, such as radiation or drug exposure. It is
widely known that oxidative stress is involved in neuronal cell death, which is one of
the major causes of neurodegenerative diseases, such as AD and Parkinson’ s disease.
In terms of AD, cytochrome c oxidase in nerve cell is specifically attacked.
Consequently, electron transport, ATP production, oxygen consumption, and mitochondrial
membrane potential all become impaired.

Lipid peroxidation is one of the oxidative damages in cell membranes, lipoproteins,
and other lipid-containing structures. The accumulation of lipid hydroperoxides (L-
O00H), which serve as the lipid oxidation products, will lead the whole body under the
state of oxidative stress. L-O0H, such as the hydroperoxides of phosphatidylcholine
(PC), phosphatidylethanolamine (PE), triglyceride (TG) has been known not only being
toxic mediators but also exerting diverse biological effects. Therefore, there has
been increasing studies on L-O0H in the recent years. However, there is few reports on
L-00H in AD patients, and there is no L-O0H analysis in nerve cells of AD-model.

The aims of this study were: to investigate the lipid hydroperoxide molecular species
in AD-model nerve cells by LC/MS, and to uncover the association between their changes
and oxidative stress in AD.

In this study, the LC/MS-based L-00H omics will be initially combined with other index,
including nerve cell damage degree (by cell viability), oxidation degree (by ROS level),
mitochondrial function (by cardiolipin level), and nerve cell function evaluation (by
plasmalogen level), to comprehensively refine the molecular characteristics in AD-
model neuronal cells.

(1) AD-modeling via oxidative stress

Cell culturing: The PC12 cells, as the commonly used neuronal cells, were
purchased from JRCB cell bank and were cultured in RPMI 1640 medium. Then, the cells
were differentiated by nerve growth factor.

AD Modeling: According to the literature, the antioxidant H;0, was used to induce
oxidative stress for the differentiated neuronal cells. The dosage gradient of H.0;
was ranged from 200 to 2000 pM.

(2) Bioassay of AD-model nerve cells

Cell viability: The CCK-8 kit was used to test the H)0,-induced cell damage.

Intracellular ROS level: The cells were loaded with DCFH-DA to obtain the images
by using the fluorescence microscope, and the fluorescent intensity was measured.

Plasmalogen profiling: The plasmalogens were extracted by Folch’ s method, and
the plasmalogen profile was acquired by the established LC/MS method.

(3) Lipidomic analysis for L-O0H

LC/MS conditions: The HPLC conditions such as column, mobile phase, and elution
gradient were optimized for ensuring the usability for the all the L-O0H species
separation. The MS scan was performed under both positive- and negative-modes for
different L-O0H classes.

Intact lipids and L-O0H analysis: The total lipids in cells were extracted by
Folch’ s method, and analyzed by LC/MS under the optimized conditions. The
identification of intact lipids and lipid hydroperoxides was conducted on the basis
of high-resolution MS and MS/MS characteristics, as well as HPLC behavior with the



comparison of the in-house database.

Comparison and statistics: The intensity of each lipid species calibrated by
internal standards were calculated for amount comparation and further statistical
analysis.

(1) AD model established by H.0, inducement of PC12 cells

Firstly, the PC12 cells were cultured and differentiated, and then treated with H.0,
with a series of concentrations. The morphology was evaluated, as the representative
photos showed in Figure 1A. The normally differentiated cells showed long and abundant
axon, while in the modeling groups, the axon number and axon length decreased along
with the dose of H;0,. The cell viability showed unchanged with low concentration of
H.0, (until 1000 pM), while for the higher dose groups the cell viability gradually
decreased (Figure 1B). In parallel, the intracellular ROS levels were significantly
higher than control in 1600, 1800, and 2000 uM groups, indicating that oxidative stress
in the differentiated neuronal cells was induced by H,0, (Figure 1C). These results
suggested that the oxidative stress-induced AD model was established for the following
studies.
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Figure 1. (A) Morphology of undifferentiated and differentiated PC12 cells of
control, and with different concentration of H)0,; (B) The viability of for the cells
treated with different concentration of H;0,; (C) The intracellular ROS levels for
the cells treated with different concentration of H)0,.

(2) ldentification of L-00H by LC/MS/MS

The oxidized lipids, specifically the lipid hydroperoxides, were detected by LC/MS/MS,
including the hydroperoxides for TG, for PC, and for PE. The identification was based
on their HRMS signals, the retention behavior on HPLC, and the tandem MS fragmentations.
The representative identification, taking PCOOH34:2 (16:0/18:2-00H) as an example, is
shown in Figure 2.

(3) Comparison of L-O00H levels among control and AD-model cells

The oxidation of lipids is widely accepted to play a crucial role in multiple
pathological processes. Free radical oxidation of unsaturated fatty chains produces a
variety of oxidized structures, such as L-O0H, as the key intermediates of oxidative
reactions generally induced by ROS. L-O0H has been known not only being toxic mediators
but also exerting diverse biological effects. Therefore, in this study, hydroperoxide
species of TG (TGOOH), of PC (PCOOH), and of PE (PEOOH) were semi-quantitated
individually, and the total level of each L-OOH class was compared between control and
AD-model groups. TGOOH showed the greatest accumulation under oxidative stress, being
with significance in 1400, 1600, and 1800 uM groups, and accounting for more than 20
folds of control in 1800 uM group (Figure 3A). While for PCOOH and PEOOH, the



accumulation showed the similar trends. These results were in accordance with the
decrease of cell viability and the increase of the ROS level, suggesting the association
of L-O0H and oxidative stress-related AD in PC12 cells.
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Figure 3. Levels of lipid hydroperoxides in differentiated PC12 cells. (A) Total
triglyceride hydroperoxides (TGOOH); (B) Total phosphatidylcholine hydroperoxides
(PCOOH); (C) Total phosphatidylethanolamine hydroperoxides (PEOOH).

(4) Depletion of cardiolipins in AD-model cells

Cardiolipins (CL) exist as crucial functional phospholipid in mitochondria, which play
a key role in energy use and lipid metabolism. In this study, CL species were semi-
quantitated, and the total CL level was compared between control and AD-model groups
(Figure 4A). As the result, the total CL decreased with the inducement of H)0, in a
dose-dependent manner, which was significant from 1200 uM. The depletion of CL as the



functional lipid under H,0.-induced oxidative stress indicated that in the current AD
model, the cells were with the damaged mitochondrial function, and thus, could not
function the (3 -oxidation normally, which resulted in the lipid metabolism disorders.

(5) variation of plasmalogen profile in AD-model cells

Plasmalogens are a kind of phospholipid with beneficial health functions, of which the
functions include mediating dynamics of the cell membrane, being involved in signal
transduction, and contributing to endogenous antioxidant activity. Plasmalogen
insufficiency is associated with various diseases and pathologic processes, including
Alzheimer’ s disease, respiratory disease, cell membrane alterations, fatty alcohol
accumulation, and other lipid metabolic disorders. Therefore, in this study, the
plasmalogen profile was also assessed (Figure 4B). It 1is noted that only the
ethanolamine plasmalogen (PISEtn) species were detected, but not choline plasmalogen,
suggesting the cell-specificity of plasmalogen characteristics. The Total PIsEtn,
accounted as the sum of all the molecular species, revealed a slight decrease along
with the inducement of H,0,,0f which the 1600 and 1800 puM groups showed statistical
significance. Moreover, the less unsaturated degree of the PISEtn species, the more
loss under the oxidative stress in the AD-model cells (Figure 4C), which suggested the
dysregulation of plasmalogen profile and the possible dysfunction of these functional
phospholipids. And, the dose-dependent manner of the loss for certain PISEtn species
was consisted with the loss of CL and the accumulation of L-OOH.
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Figure 4. Variation of functional lipids in AD-model cells. (A) Depletion of
cardiolipins; (B) Changes of ethanolamine plasmalogen; (C) Varied composition of
molecular species ethanolamine plasmalogen.
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In summary, in this study, the AD cell model by using PC12 neuronal cells was
established, the intracellular intact lipids and oxidized lipids were detected by LC/MS,
and the contents of the molecular species were determined. Besides, cell morphology,
viability, and reactive oxygen species levels were evaluated. As a result, the lipid
hydroperoxide molecular species accumulated with the increased H;0, concentration,
suggesting the oxidative damage in the molecular level. Moreover, the amounts of
functional lipids including plasmalogens and cardiolipins were decreased along with
the increased H,0; concentration. This study showed that the lipid metabolism disorders
occurred in AD model neurons, which suggested a close association between lipid
hydroperoxides and AD.
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