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This study expands the scope of stress studies by examining how sleep modulates brain’ s response to

stress during sleep. The findings will inform the development of new interventions for
stress-related sleep problems.

This study explored the associations between bedtime stress and the
hemodynamics in the prefrontal cortex (PFC) during the first sleep cycle. Stress biomarkers
including salivary cortisol and slgA were measured. Perceived stress level was rated on a 1-10
Likert scale right after the collection of the salivary samples. The hemodynamics of the pre-frontal

cortex (PFC) was measured using a wearable functional near-infrared spectroscopy (fNIRS) device.
Stress was found to correlate to the hemodynamics in the mid-DLPFC, the caudal-DLPFC, and the left
RLPFC. The relationships between stress and these PFC subregions depends on the stress indicator
adopted. Our finding provides supplementary support to the role of the PFC in processing stress.
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Stress is a worldwide epidemic with major health consequences. Stress is also known to cause
sleep problems, suggesting abnormalities in brain activity during sleep in response to stress.
Understanding the neurophysiological mechanism that underlies the relation between stress and
sleep may give hint to the development of brain activity markers of stress, which can be readily
measured and monitored using wearable brain-computer interface technologies. Findings from
previous neuroimaging studies conducted in wake time has shed light on the role of the prefrontal
cortex (PFC) in responding to acute stress. Nevertheless, no study has looked at stress-related
abnormality in brain during sleep. A main reason for this knowledge gap is that conducting brain
scanning during sleep is difficult using traditional brain imaging techniques (e.g., fMRI and PET),
because participants could hardly fall asleep in noisy and vibrating scanners. Recent advances in
alternative neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and
wearable technologies have led to a promising solution to overcome the limitations of traditional
techniques.
2. WHEDOHH

In this study, we aimed to explore the association between bedtime stress and the hemodynamic
responses in the PFC during the first cycle of nocturnal sleep We quantify stress level using both
objective and subjective indicators. This study serves to validate the feasibility of using wearable fNIRS
to explore brain activity in daily life settings, as well as generating preliminary suggestion to the
development of new stress response markers in cortical hemodynamics during sleep. We especially
focus on answering the following two research questions: (1) what feature variables derived from the
hemodynamic responses in the PFC are significantly associated to the level of stress biomarkers and
to perceived stress, respectively? (2) which subregions in the PFC are significantly associated to the
level of stress biomarkers and to perceived stress, respectively?
3. WHEDTIE

A. Measuring Stress and Brain Activity

Salivary cortisol and sIgA concentration were measured using the SOMA Dual Analyte LFD test kits.
These kits can be used for real-time measurement of cortisol and sIgA conveniently in a naturalistic
setting. Saliva samples were collected using oral fluid collector (OFC) swabs and were incubated for
15 minutes in OFC buffers before being read. The participant was instructed not to eat, drink, or brush
teeth 30 min prior to providing a saliva sample. The limit of detection (LOD) is 0.17 nM for cortisol and
18.10 pg/mL for slgA. The limit of quantification (LOQ) is 0.58 nM for cortisol and 24.30 pug/mL for sigA.
The calibration ranges are 1.25-40 nM for cortisol and 25-800 pg/mL for sigA. In addition to the
measurement of stress biomarkers, we also collected data on perceived stress using a 1-10 Likert scale,
with larger value indicating higher level of perceived stress. This scale was implemented using a mobile

app called Health Log.

Brain activity as characterized by cortical hemodynamics was measured using a wearable
functional near-infrared spectroscopy (fNIRS) (Brite 24; Artinis Medical Systems Co., The Netherlands),

which measures the concentration changes in oxyhemoglobin (AO2Hb), deoxyhemoglobin (AHHb),



and total hemoglobin (AHbt) in cortical brain areas. The fNIRS used in this study has 10 transmitters
(Tx) and 8 receivers (Rx). The Txs take turns to emit infrared light at two wavelengths: 760 nm and 850
nm. Part of the infrared light gets scattered or absorbed as it travels through the human tissue of the
head (i.e., sculp, skull, and cortex). The rest returns to the surface of the head and is captured by the
Rxs. The Txs and Rxs were configured into 27 channels. The optodes were placed between the FpZ-
F3-Cz-F4-FpZ region in the prefrontal cortex according to the international 10-20 EEG system with an
interoptode distance of 3 cm (aka. penetration depth = 1.5 cm). They were fixed on a soft neoprene
head cap, which ensures the alignment of optode placement across different measurements. A Fitbit
Sense was used to record the start of sleep. Previous studies have demonstrated the validity of Fitbit

in detecting sleep onset.

B. Data Collection Protocol

Grounded on the N-of-1 trial method, a longitudinal data collection experiment was conducted
with one healthy participant (male, 36 years). The data collection experiment lasted 15 days. This
study has been approved by the Ethics Committee of the Kyoto University of Advanced Science and
written informed consent was obtained from the participant before the experiment started. On the
nights that the data collection experiment was conducted, we took saliva samples from the participant
before he went to bed. We ensured that the samples were always collected during a fixed time period
between 22:00-23:00, as cortisol and sIgA level follow a 24-hour rhythm. It is hence highly
recommended to measure these hormones at a constant time of the day to cancel out the
confounding effect of the circadian rhythm. Right after taking the saliva sample, the participant was
asked to rate how stressful he felt on the Health Log app. When the participant was ready to go to
bed, we set up the Brite 24 on his head, started the device and put the Fitbit Sense on his non-
dominant wrist. The participant was asked to firstly sit quietly on bed while staying awake for 2
minutes. The purpose of the awake rest phase is to reset the brain to a common baseline, as the fNIRS
device measures the concentration changes—not the absolute concentration—of the oxyhemoglobin
and deoxyhemoglobin. After the awake rest phase, the participant then got in bed and turned off the
light. The Brite 24 was left on until it ran out of battery. The participant was instructed to take off and
stop the Brite 24 (simply by pressing the main button) when he needed to go to the restroom early
morning or when he woke up, whenever which happened first. It is worth noting that the participant

shaved his hair to eliminate the interference of dark hair on the signal quality of the Brite 24.

C. Data Analysis Protocol

The measured salivary cortisol and slgA data were manually input into a csv file. The perceived
stress levels were exported from the Health Log app into a csv file with a premium account. The two
files were then merged through matching date stamps. The fNIRS data were first exported from the
device in the form of raw optical density (OD) data. Bad channels were removed using the scalp
coupling index method with 0.75 as the cut-off threshold. The OD data were then transformed to
AO2Hb and AHHb using the modified Beer-Lambert law (MBLL). Breath and heartbeat noise were
removed using a bandpass filter with cut-off frequencies 0.02-0.18 Hz. Time and frequency domain
features were then derived from each channel. The fNIRS data processing pipeline was implemented

in Python 3.8.8.



TABLE I. VARIABLES USED IN CORRELATION ANALYSIS

Category Metric (Denotation) Data Type Device & Instrument
Stress Salivary cortisol (SC)
Continous | SOMA Dual Analyte LFD
Salivary slgA (SA)
Perceived stress (PS) Ordinal 1-10 Likert scale

Mean (mean_02/mean_H)

Brain Median (md_02/md_H)

activity as | Standard deviation (sd_02/sd_H)
indicated by | Skewness (sk_02/sk_H)

AO2Hb and | Kurtosis (kt_02/kt_H)

AHHb Total power (tp_02/tp_H)

Continous Brite 24

signals Maximum frequency (mf_02/mf_H)

Peak ratio (pr_02/pr_H)

The stress data and the features derived from the fNIRS data were all merged into an csv file by
matching the date stamps. Table Il provides a list of all the variables that were used in the subsequent
correlation analysis. Pearson’ correlation coefficients were calculated pair-wisely on continuous
variables, and Spearman’s correlation coefficients were calculated on variables at ordinal levels. The
significance of the correlation coefficients (significance level a = 0.05) was tested to decide whether
the values of the coefficients were significantly different from zero. Correlation coefficient matrix was
calculated using the Pandas python library, which was then used to create a heatmap using the
Seaborn python library. The statistical test on the correlations was performed using the SciPy library.
4. WFIERR

In total 15 days of data were collected. Table Il presents the statistically significant correlations
between stress indicators and the features derived from the cortical hemodynamics. A rough

visualization of the suppressed and aroused subregions is provided in Figure 1.

Correlation analysis results suggested two main findings. First, the standard deviation, skewness,
and kurtosis of the AO2Hb and the AHHb averaged across all channels were significantly correlated,
suggesting a possible phase synchronization between the two types of hemoglobin in the PFC during
the first sleep cycle. Such linear correlation between the AO2Hb and the AHHb has been previously
observed when participants underwent visual stimulations in wake time. Second, the relation
between stress and the hemodynamics in the PFC depends on the stress indicator adopted. Higher
salivary cortisol level was associated to increased concentration change of the oxyhemoglobin in both
the left and the right DLPFC, suggesting stress-associated abnormal arousal in these subregions. Lower
slgA was associated to increased mean concentration change of oxyhemoglobin in the whole
measured region and the median concentration change of oxyhemoglobin in the left caudal DLPFC,
suggesting stress-associated arousal in these regions. On the other hand, lower slgA was associated
to lower peak ratio of the concentration change of deoxyhemoglobin and thus suggests possible

suppression of the right caudal DLPFC.

In comparison to stress biomarkers, perceived stress was associated to more subregions in the

PFC during the first sleep cycle. Higher perceived stress was associated to arousal in the left RLPFC,



the left mid-DLPFC, and the left caudal-DLPFC, as well as suppression in the left-caudal-DLPFC. Higher
perceived stress was correlated to increased dynamics of the deoxyhemoglobin but suppressed
dynamics of the oxyhemoglobin in the mid-DLPFC, as well as increased dynamics of oxyhemoglobin in

the caudal-DLPFC.

TABLE Il. STATISTICALLY SIGNIFICANT CORRELATIONS BETWEEN BEDTIME STRESS AND HEMODYNAMIC FEATURES
Metric 1 Metric 2 r p Metric 1 Metric 2 r p
SC md_02 (Rx2-Tx3) 0.631 0.015 PS pr_02 (Rx4-Tx4) -0.636 0.011

pr_02 (Rx6-Tx4) 0.561 0.037 mean_H (Rx4-Tx5) 0.610 0.016
SA mean_02 -0.578 0.024 sd_H (Rx4-Tx5) -0.597 0.019
md_02 (Rx2-Tx1) -0.522 0.046 tp_H (Rx4-Tx5) -0.597 0.019
md_02 (Rx2-Tx3) -0.549 0.034 sd_02 (Rx4-Tx8) -0.681 0.005
pr_H (Rx6-Tx8) 0.568 0.027 tp_02 (Rx4-Tx8) -0.681 0.005
sd_02 (Rx3-Tx3) -0.574 | 0.025 mf_02 (Rx4-Tx8) -0.651 | 0.009
sd_H (Rx3-Tx3) 0.521 0.046 mf_H (Rx6-Tx4) -0.538 0.038
tp_02 (Rx3-Tx3) -0.574 0.025 mean_H (Rx6-Tx8) 0.630 0.021
tp_H (Rx3-Tx3) 0.564 0.029 md_H (Rx6-Tx8) 0.647 0.009
P sd_02 (Rx4-Tx4) -0.548 | 0.035 sd_02 (Rx6-Tx9) 0.67 0.006
sk_02 (Rx4-Tx4) 0.672 | 0.006 mf_02 (Rx6-Tx9) 0572 | 0.026
tp_0O2 (Rx4-Tx4) -0.548 | 0.035 mean_H (Rx6-Tx9) 0.652 0.041
mf 02 (Rx4-Tx4) -0.655 0.008 mean_02 (Rx7-Tx7) 0.717 0.046

() (b) (c)

Figure 1. Visualization of channels in which the measured cortical hemodynamics was positively (red) and

negatively (blue) associated to different stress indicators. Purple indicates that both arousal and

suppression was observed. (a) salivary cortisol, (b) sIgA, (c) perceived stress.
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