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The research purpose of this project is to find the best spectral response

functions for accurate multispectral-to-hyperspectral reconstruction using deep neural networks,
and when necessary, implement the deeply learned filters by using film manufacturing technologies.
We have tried to indentify the best camera spectral response curves from a given camera database,
and design the optimal IR-cut filter for RGB-based spectral reconstruction. We have also examined
fusion based spectral reconstruction, and found the best camera spectral response curves. Finally,
we have gone beyond spectral reconstruction and examined the effect of spectral response fuctions
for high-level task of scene classification.
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Hyperspectral imaging captures detailed light distribution along the wavelength
axis. It is shown to be beneficial to remote sensing, medical diagnosis, industrial
detection, and so on. For example, the tumor margin that is invisible to surgeon’ s
eyes can be better visualized in hyperspectral images, and the leak of invisible gas
can be detected using spectral signals. To capture hyperspectral images, most existing
devices are scanning based, that is, either to drive a line slit along one spatial
dimension (pushbroom scan) or to continuously change narrow bandpass filters in front
of a greyscale camera (filter scan). The key drawback is that scanning is slow, which
prevents their application to dynamic scenes. For acceleration, scanning—free snapshot
hyperspectral devices have been developed, by using for example fiber bundles or
randomized aperture masks. Unfortunately, these devices are extremely limited in
spatial resolution.

A computational hyperspectral reconstruction method from a multi-channel image is
promising in conquering the drawbacks of aforementioned hyperspectral devices. However,
existing multi-channel cameras, such as the widespread multi-sensor prism based RGB
cameras or single—sensor Bayer filter array based RGB cameras, are best designed to
mimic human color perception, thus their spectral response functions are not
necessarily optimal for hyperspectral reconstruction. Therefore, the key scientific
question here is ‘what are the best filter response functions for the purpose of
multispectral-to—hyperspectral reconstruction, and how to find them in a
computationally tractable way?’

2. WEOBEK

The research purpose is to find the best spectral response functions for accurate
multispectral-to—hyperspectral reconstruction using deep neural networks, and when
necessary, implement the deeply learned filters by wusing film manufacturing
technologies
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The core methodology is to model the filter spectral response functions into
specialized convolutional layers and attach them onto a deep neural network that is
designed for multispectral-to—hyperspectral reconstruction. Rather than fixing the
response, we leave the filter responses as a design factor and automatically find the
optimal filters through end-to—end learning. To accurately implement the designed
filter response functions, the restrictions imposed by physical laws and the
manufacturing process should be accounted in the designing process.

4. WFFRER
During the project duration from 2019.4 to 2021.3, we have achieved the following
major results.

4.1. Optimal Filter Selection from a Given Camera Response Database

It has been shown that the camera response functions play a key role in spectral
reconstruction on the basis of sparse coding. However, it remains unknown whether this
conclusion applies to deep learning based spectral reconstruction or not. Through brute
force evaluation, we have confirmed that, the accuracy of spectral reconstruction
depends on the camera response functions intrinsically, irrespective of the methods
used for reconstruction. Furthermore, although it is feasible in principle to find the
optimal filters from a given camera response database through brute force evaluation,
this process is extremely time—consuming. To resolve this issue, we further model the
filter selection process into a convolution layer, and introduce the nonnegative L1-
norm penalty to pick up the best filter through end-to—end learning. As shown in Figure
1, the optimal camera can be correctly localized through our proposed technique by
examining the non—zero element of the linear combination coefficients assigned to the
cameras.
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Figure 1. Optimal camera selection for spectral reconstruction through end—to—end deep
learning. The subfigure above shows the spectral reconstruction error is obviously
affected by the camera spectral response functions, and the Grasshopper2 14S5C camera
is the best in the given camera database for the purpose of spectral reconstruction.
The subfigure below shows that the best camera can be directly localized by examining
the linear combination coefficients of the cameras, without brute force evaluation.

4.2. Tuning the IR—Cut Filter for Spectral Reconstruction from RGB

By examining the spectral response functions of the Grasshopper2 14S5C camera, we
have noticed that its response in the 620 700nm range is much stronger than that of
the other cameras. By further investigating the interior construction of commodity
cameras, which usually place an IR-cut filter in front of the color sensor to block
out the near infrared light, it becomes apparent to us that the response of the IR-cut
filter has obvious effect on the spectral reconstruction. For example, some camera
makers use an IR-cut filter, whose cut—off wavelength is 620nm, thus red light beyond
620nm can not reach the sensor, which is therefore inappropriate for spectral
reconstruction in the 6207 700nm range.

Therefore, we have tried to design the IR—cut filter response, so as to maximize
the spectral reconstruction accuracy. We first design a network for spectral
reconstruction and illumination spectrum estimation. Then, we measure the spectral
response functions of a community camera after removing its IR—cut filter. We adapt
the IR-cut response into a convolution layer, and let deep learning automatically
design the optimal response for the sake of maximizing spectral reconstruction accuracy.
To facilitate filter manufacturing, we introduce smooth constraints and nonnegative
constraints. As a result, the designed IR-cut filter can be physically realized through
film filter manufacturing technologies. The experiment results show that, the existing
camera can be easily adapted by replacing the old IR-cut filter with our
designed/realized IR-cut filter, and the accuracy of spectral reconstruction can be
much improved.
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Figure 2. Turning the IR-cut filter for improved spectral reconstruction from RGB. (a)
shows the IR-cut mechanism of commodity RGB cameras. (b) shows the response of the RGB
sensor without the IR-cut filter, and the transmittance of the IR-cut filter. (c) shows
the realized IR-cut filter and the easy adaption of the camera, which offers improved
spectral reconstruction accuracy.

4.3. Optimal Filter Selection and Design for Fusion based Spectral Reconstruction

We have also investigated how filter selection and filter design will affect fusion
based spectral reconstruction. In recent years, to fuse a low-resolution spectral image
with a high-resolution RGB image is a popular way for spectral reconstruction. Compared
with the reconstruction task from RGB, the fusion based method is less likely to be
affected by the color metamerism issue. For example, the white LED lamp and the sunlight
appear almost the same to the RGB camera, however, their spectra are quite different
To disambiguate the reconstruction, a spectral imager, although its spatial resolution
is limited, will be very helpful.

We have first designed a novel multi-level and multi-scale spatial and spectral
fusion network for spectral reconstruction. Compared with existing network structures,
the proposed network is better at utilizing structural information embedded in the
hybrid input, and the spectral reconstruction accuracy can be clearly improved, when
trained and tested with the same protocols.

We have found that, similar to the case of RGB-based reconstruction, the spectral
response functions of the RGB camera play a key role in fusion based spectral
reconstruction. After introducing specialized convolutional layers for filter selection
and design, we further developed schemes for automatic optimal filter selection and
optimal filter design, and both achieved much improved results

Our finding is that, as shown in Figure 3, the best camera for fusion based spectral
reconstruction keeps unchanged as in the RGB-based reconstruction task. This indicates
again that, the response in the 6207 700nm range is very important for accurate spectral
reconstruction in the full visible range from 400nm to 700nm.
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Figure 3. Optimal camera selection for fusion based spectral reconstruction. The
subfigure above shows the spectral reconstruction error is obviously affected by the
camera spectral response functions, and the Grasshopper2 14S5C camera is the best in
the given camera database for the purpose of fusion based spectral reconstruction. The
subfigure below shows that the best camera can be directly localized by examining the
linear combination coefficients of the cameras, without brute force evaluation.

4.4. Optimal Filter for Spectra based Classification

Until now, we have focused on spectral reconstruction. However, in many application
scenarios, scene understanding, such dimensionality reduction and object classification,
is the ultimate goal. Therefore, it is interesting to investigate the effect of camera
response functions on high—level classification tasks.

We first developed a deep learning based network for classification. Then, we
designed the optimal camera spectral response functions to maximize the accuracy of
classification. The designed curves are shown in Figure 4. We have verified that the
optimally designed response functions can benefit classification accuracy
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Figure 4. Optimal camera response functions for the Salinas Valley dataset in the case
of 10 bands. The right subfigure shows the singular values of these 10 response curves,
which indicates that the correlation of these 10 curves is not very strong
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This researches conducted in this project have further inspired us to explore data-driven imaging hardware design in the broad sense, including
filter pattern design, aperature design, and phase mask design.
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