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Until a few years ago, computers could not_recognize things in pictures.
For example, computers were not capaﬁle to tell whether any human is in a given picture or not.
Around ten years ago, computer programs became capable to recognize a number of things in pictures
with high precision, including humans, dogs, cars, etc. The development of many technologies such as
self-driving vehicles and robots were previously limited by the inability of computers to recognize
such objects: for example, a self-driving car can not drive if it can not recognize a pedestrian on
the road.
However, computers can currently only recognize a finite number of things such as "a man" or "a
woman™, while humans can recognize things with more details and nuance such as _"a young asian woman
on a bike". This research project has worked towards giving computers the ability to recognize more
complex and less predefined things, in order to allow computers to take better decisions.
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Object recognition is a foundational task for computer vision and artificial
intelligence. In the past decade, Convolutional Neural Networks (CNN) have allowed for
unprecedented progress in object recognition. CNN-based object recognition has become
the backbone of modern computer vision: complex vision systems ranging from object
detection and image segmentation systems to higher level models such as image captioning
and Visual Question Answering systems, all rely on the backbone architecture of CNN
classifiers. Hence, algorithmic progress on the core problem of object recognition has
the potential to impact all downstream systems

and applications. Training Inference

One major limitation of current vision systems ““ |

is that they can only recognize a finite set of .
visual concepts predefined by the available
training data. In comparison, humans can
continually define and recognize new object
categories as they see them for the first time.
For example, a child can recognize a zebra for Figure 1. llustration of ZSL process
the first time he sees one as his mother explains

to him that “ zebras look like horses with black

and white stripes” . The idea of ZSL is inspired by this human ability to define and
recognize new object categories from abstract descriptions. In ZSL, descriptions are
referred to as semantic representations. Figure 1 illustrates the two-step process of
zero-shot recognition on a toy example: In the training step, ZSL models learn a
mapping between objects and their semantic representation from a set of known training
classes. In the inference step, the model is shown images of new unknown classes. Using
the mapping learned from the training classes, ZSL models map these inputs to their
semantic representations to perform recognition. Given this formulation, ZSL research
encompasses three key challenges:

1. Visual feature extraction: What feature representations of high-dimensional
images yield best recognition accuracy and do these feature representations differ
from visual features computed by traditional object recognition systems?

2. Semantic features extraction: What descriptions can enable zero-shot
recognition of object categories? What feature representation of these descriptions
yield best recognition ability?

3. Multi-modal mapping: How can we efficiently bridge the gap between high level
semantic representations and low level image features?

Despite their great potential impact, and after a decade of active research, the
accuracy of zero-shot recognition models remain too low to be considered for practical
applications. The goal of this research is to

improve the accuracy of zero-shot recognition )
models to enable their industrial deployment. , :
As illustrated in Figure 2, the architecture of ZSL 4 N
models can be seen as the combination of three I [ Core Z5L.
modules addressing each of the above key s ' | v
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Figure 2. lllustration of ZSL architecture

Our research project is organized in three phases, as summarized in Table 1:



In phase 1, we will focus on the large-scale acquisition of semantic descriptions.
Large-scale 1image recognition datasets feature

tens of thousands of visual classes, which makes
manual description annotations impractical. Hence
the challenge of phase 1 consists in automating
the semantic description acquisition process. In
addition to word embeddings, we consider textual
documents and knowledge graph as description
modalities. Figure 3 illustrates these three
modalities for the visual class “ Cassowary” . We

Cassowary

= » — Large black flightless

a horny head crest

| Imagenet | | Wc;rdncr |

bird of Australia having

propose to leverage semantic web technologies to

automate this large-scale acquisition process. Fjgure 3. lllustration of class descriptions as

Semantic web infrastructure provides an words (blue), documents (red) and graph
interlinking between the resources of large

knowledge bases including Wikipedia, WordNet, and

FreeBase. Following the links between these knowledge bases, as illustrated in Figure
4, we can map the visual classes of the ImageNet
dataset to either Wikipedia articles or knowledge
magenet | [ Wordnet | Ceawane | | graph descriptions.

Phase 2 focuses on the extraction of visual feature
representation and the impact of different training
paradigms (supervised, self-supervised, etc.) on
Zero-Shot classification benchmarks. This phase will
require optimization of our computational capacities
so as to scale to large scale datasets

I .
| m@;m| [Dareda | Finally, in the third phase, we will focus on the
integration of the classifier into practical models,

Figure 4. lllustration of data acquisition — ejither semantic segmentation or object detection
process through semantic web pipelines.
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Table 1: Summary of research plan

Initial efforts on visual feature extraction have to drastic memory requirement
reduction: | proposed a family of architectures made of submodules whose computations
either admit an analytical inverse or whose analytical inverse can be recovered with
minimal memory cost. Using their analytical inverse, hidden activations necessary for
the computations of the network®s weight gradients can be backpropagated together with
the gradient during the backpropagation step, hence bypassing the need to maintain
these activations in memory. 1 characterized and derived a precise quantification of
the numerical errors arising in the inverse reconstructions within long chains of
invertible modules. 1 used this analysis to drastically reduce the GPU memory cost of
training Convolutional Neural Networks.

This preliminary development then lead us to investigate the performance on self-



supervised visual representations on the task of Generic Object ZSL (GOZ). We compared
these features to traditional supervised representations and found they tend to perform
better on standard zero-shot learning task whereas they do not match the supervised
representations on the generalized zero-shot learning setting. Closing the gap between
closely clustered supervised representations that perform well on training classes and
more scattered unsupervised representations on the training classes while retaining
higher accuracy on the unseen test classes has been identified as a promising research
question.
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