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How to generate natural-sounding speech waveform from a digital system is a
fundamental question in speech science. By combining classical speech science, signal processing
methods, and recent deep-learning techniques, this research project proposes a family of neural
waveform model called neural source-filter waveform (NSF) models. It was demonstrated that the
proposed NSF models can produce high-quality waveforms at a much faster speed than the commonly used

WaveNet models. It was also demonstrated that the NSF models can be extended to incorporate other
classical methods from the speech modeling field, including harmonic-plus-noise speech model.
Finally, it was demonstrated that the NSF model can be applied to music instrumental audios, showing

its flexibility and potential in modeling speech and non-speech sounds.
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Research background

Although humans can easily utter natural speech, how to enable a machine to produce natural
speech waveforms is a fundamental research topic in speech science.

When this project started in 2019, there had been two research directions on the issue above.
The first one is expert-knowledge-based. For example, the source-filter speech production theory
[1] argues that the speech waveform is produced by generating a source signal with a specific
fundamental frequency (FO) and then filtering it into the output waveform using a filter (top panel
of the Fig.1). Based on this theory, many classical speech vocoders have been proposed.
Although they can generate understandable waveforms, the quality is far from being good.

The second stream of research mainly relies on recent deep learning methods (middle panel of
Fig.1). With a large amount of data, some neural networks such as the WaveNet [2] can generate

speech waveforms with a quality close

to that of human speech. However, o
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waveform in the time domain. They
sample one output waveform value,
feedback it to the network’s input, and
generate the next waveform value.
However, it is extremely slow to
generate the waveform point by point in
such an auto-regressive (AR) process.
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Facing the two streams of research
work, our key scientific question is:
how we can combine the speech
science knowledge and deep learning
for a neural waveform model that
generates high-quality waveforms at
afast speed. Another scientific question
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is whether we can apply the same
model to sounds that are not human
speech.

Fig.1 Existing and proposed approaches. White and
grey blocks denote classical signal processing and
recent deep learning-based techniques, respectively.

The above background motivated us to propose a family of neural source-filter waveform
models (NSF) that combines the neural network (grey blocks in Fig.1) with classical digital filters
(white blocks in Fig.1). The proposed family of NSF models is the core contribution of this research
project, and it will be detailed in the rest of this report.

Research Motivation and goals

While the general goal is to define waveform models that combine classical speech
production theory and recent deep learning techniques, we defined three specific goals:

Goal 1: Accelerate generation speed

How can we revise the slow neural waveform model using the knowledge of speech science
(e.g., the source-filter theory) and accelerate the waveform generation speed? We also need
to ensure that the quality of the generated waveform will not severely degrade.

Goal 2: Improve the quality of generated waveform
If Goal 1 was achieved, can we improve the quality of the generated waveforms from our
neural waveform model by using more advanced speech modeling theory?

Goal 3: Beyond speech waveform

If Goal 2 was achieved, can we use the new model for non-speech waveforms, such as music
signals? Since deep learning is data-driven, it may be possible to model non-speech
waveforms using the proposed models.



Research methods

For Goal 1, we combined classical signal processing techniques with deep learning models
in the proposed NSF models. This is possible because many signal processing techniques
can be interpreted from the deep-learning point of view. For example, short-time Fourier
transform (STFT) can be interpreted as matrix transformation in the complex-valued domain,
and it can be plugged into deep learning models. This is used in the proposed NSF models.

For Goal 2, we combined classical speech modeling methods, including the harmonic-plus-
noise speech model [3] and glottal excitation theory [4]. These theories improve the NSF
models and allow them to better model speech sounds for different applications: multi-
speaker, speech sound in reverberation condition, and so on.

For Goal 3, itis straightforward to apply the proposed NSF models to non-speech sounds. In
this project, we were particularly interested in applying them to music instrumental audios,
including audios from strings, woodwinds, and brass instruments.

Research outcome

\/ Goal 1: NSF can generate high-quality speech waveforms with more than real-
time speed (cf. papers published in ICASSP 2019 and IEEE Trans. ASLP 2020):
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Fig.2 Diagram of the 1st neural source-filter-waveform model. White and grey blocks denote
classical signal processing and recent deep learning-based techniques, respectively.

Based on the research methods for Goal 1, we combined the advanced dilated convolution
networks with the STFT-based training criterion (i.e., spectral distance), which lead to the
first version of our proposed neural source-filter waveform model in Fig.2. We call it
baseline NSF (b-NSF) in our research papers.

We evaluated the quality of the generated waveforms from the b-NSF on a large-scale
Japanese Female voice database, with classical speech vocoders and the WaveNet as
reference. As the box plot in Fig.3 shows, the mean of the quality scores (white dot) of the b-
NSF is better than the classical vocoder (i.e, WORLD) while being close to the WaveNet.
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Fig.3 Evaluation of b-NSF, WaveNet, and WORLD vocoder. White dot denotes the mean value
of quality scores, and a higher mean score indicates a better performance.

In terms of generation speed, as Fig.4 shows, the b-NSF is much faster than WaveNet,
especially in normal mode where the GPU memory is sufficient for the model.



How many waveform points can be generated in 1s (Tesla p100)?
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Fig.4 Waveform generation speed

\/ Goal 2: NSF can be improved for waveform generation in different applications
(cf. paper published in ssw2019 and Interspeech 2020)
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\/ Goal 3: NSF can be applied to music instrumental audios (cf. paper published
in ICASSP 2020)
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Fig.5 Applying NSF on music instrumental audios

We also tested the NSF models on piano sounds. A key difference between piano sound and
human speech is that the former is polyphonic, i.e., a piano sound contains multiple notes at
the same time. Interestingly, we found that the NSF model can still produce the piano sounds
in a reasonably good quality. This work has been submitted as a paper.

Open source codes and audio samples:

We released the source code of NSF models in both CUDA and Pytorch:
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts
https://github.com/nii-yamagishilab/project-CURRENNT-scripts

We also publish the audio samples from the NSF models:
https://nii-yamagishilab.qgithub.io/samples-nsf/

Other research outcomes are detailed in the published papers.
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Home page of neural source-filter waveform models
https://nii-yamagishilab.github.io/samples-nsf/

Neural source-filter waveform model in Pytorch
https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts

Neural source-filter waveform model in CUDA
https://github.com/nii-yamagishilab/project-CURRENNT-public

Scripts to use the CUDA implementation
https://github.com/nii-yamagishilab/project-CURRENNT-scripts
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