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Unlike too-long-pulse XFEL or too-weak@keV atomic harmonics, our new x-ray source can image
nanostructures and macromolecules before electrons escape. This will enable revolutionary Attosecond
Lensless Quantum Imaging, show true molecule structure, and may clarify a debatable quantum nature

of life.

We are developing a spatially and temporally coherent bright attosecond keV
x-ray source (>1el2 photons, ~le-17 s) [Root Project: Kiban(A)19H00669], where laser-driven
relativistic plasma singularities emit x-rays (Burst Intensification by Singularity Emitting
Radiation, BISER phenomenon discovered by us [Pirozhkov, Esirkepov, et al., Sci. Rep. 7, 17968
(2017)]). Earlier, we deduced singularities only by their time-integrated x-ray emission. We
proposed to boost our Root Project by direct time-resolved visualization of singularities necessary
to increase the photon number and source stability.

We developed two diagnostics: (1) optical probing with probe pulse post compression and (2)
femtosecond-Kerr-gated imaging. The advanced diagnostics already led to >100x BISER brightness

increase in our experiment in the UK. These diagnostics will be used for singularity visualization
simultaneously with measuring coherent BISER x-rays in the FY2023 Root Project experiment.
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1. BB YU FI DT Background at the beginning of the study

We were developing a spatially and temporally coherent bright attosecond keV x-ray source (>10'2 photons,
10 attosecond pulse) [Root Project: Kakenhi Kiban (A) 19H00669], where laser-driven relativistic plasma
singularities emit x-rays (Burst Intensification by Singularity Emitting Radiation (BISER) phenomenon
discovered by us [Pirozhkov, Esirkepov, et al., Sci. Rep. 7, 17968 (2017)]). Unlike too-long-pulse X-ray
Free Electron Lasers (XFELs) and too-weak-at-keV atomic harmonics, our new source can image
nanostructures and macromolecules before electrons escape from atoms. This enables revolutionary
Attosecond Lensless Quantum Imaging which may elucidate a debatable quantum nature of life [Al-Khalili,
McFadden, "Life on the Edge" (2014)]. By the beginning of this Project, we deduced singularities only by
their time-integrated x-ray emission.

2. WD BHJ Purpose of the study

We proposed to boost our Root Project by direct time-resolved visualization of singularities with (1) a few-
femtosecond optical probe and (2) femtosecond-Kerr-gated imaging, performed simultaneously with
measuring coherent BISER x-rays. This would bring insight into the challenging problems of increasing
the photon number and enhancing the stability, which are necessary for practical x-ray source.

3. B35 Research methods

Burst Intensification by Singularity Emitting Radiation (BISER)

BISER is an ultrabright, spatially and temporally coherent attosecond x-ray source. The x-rays are emitted by
multistream plasma flow singularities driven by multi-TW femtosecond laser propagating through underdense
plasma. These bright x-rays were discovered [Pirozhkov ef al., PRL 108, 135004 (2012)], Fig. 1, and the
BISER mechanism was validated [Pirozhkov, Esirkepov, ef al., Sci. Rep. 7, 17968 (2017)]], Fig. 2, by us.
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(1) A few-femtosecond optical probing of relativistic plasma singularities

We proposed to visualize plasma singularities by an ultrafast (femtosecond) transverse optical probe.
Plasma optical probing is often employed in experiments [Sévert et al., PRL 115, 055002 (2015)], however,
the relativistic singularities emitting bright x-rays have not been studied by this method till now.

(2) Femtosecond-Kerr-gated imaging

We also proposed to visualize plasma singularities using time-gated imaging [Symes et al., APL 96, 011109
(2010)] of their self-emission, the technique is somewhat similar to Polarization-Gated Frequency-
Resolved Optical Gating (PG FROG). In contrast to PG FROG, where the spectrum is polarization-gated,
in Kerr-gated imaging the image itself is polarization-gated, which provides femtosecond "shutter speed".

The main challenges for all singularity visualization methods are:

(i the nano-scale size of the singularities,
(i) their micro-scale separation (typically ~ 5 um), and
(iii) their relativistic speed.

Thus, both of the proposed methods required significant modifications and improvements.



4. W73 Research results

COVID-19 made a significant impact on the Project. All international experiments were delayed and some
even cancelled; the Team Leader of our Counterpart Research Institution, Professor David Neely sadly
passed away in 2020, which was a hard blow to the entire international research community. Nevertheless,
we achieved significant research results.

Simulations of optical probing of singularities. The optical probing cannot resolve a few-nm singularities
size. However, very important information, necessary for the x-ray source development, includes positions
of the singularities in the mm-scale plasma, and their geometry — that is, relative positions and distances.
These properties can be extracted by optical probing provided that the spatial resolution and motion blur
are both smaller than inter-singularity separations, i.e. typically ~5 pm. The spatial resolution of ~1 pm is
possible with a good microscope objective; however, the 5 pm motion blur requires optical probe duration
of shorter than (5 pm/c) = 17 fs; here c is the speed of light. Ideally, the probe should have duration of ~10
fs or shorter. We developed the theory and performed Particle-In-Cell (PIC) simulations of optical probing
of relativistic plasma singularities and published these results in [1], Fig. 3.
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Fig. 3.  Optical probing of relativistic plasma singularities [1]. (a) Schematic. (b) PIC simulation.

Optical probing of singularities: practical considerations. After that, we considered practical
implementation of the proposed scheme. In experiments we are using lasers with ~50 fs typical durations.
Thus, a part of the laser pulse used for optical probing must be shortened several times. A method suitable
for large-scale (100 TW and above) facilities and short experimental campaigns is Compression after
Compressor Approach, CafCA [Khazanov, Mironov, and Mourou, Phys.-Usp. 62, 1096 (2019)]. Unlike
typically used fiber post-compression, in CafCA the nonlinear spectral broadening (Self-Phase Modulation,
SPM) is achieved in thin glass plates, and the entire setup can be implemented in vacuum. After SPM, the
broadband pulse is compressed with chirped (negative-dispersion) mirrors, similar to the fiber post-
compression. We simulated the pulses compressed with CafCA, starting from the experimental SPM spectra
obtained in our experiment with the J-KAREN-P laser; it turned out that even best-compressed pulses
exhibit satellite pre- and post-pulses. To check how this affects probing of singularities, we performed PIC
simulations using realistic probe pulses. We showed that for expected CafCA-compressed probe pulses, the
probing of singularities is possible. We published these findings in [6], Fig. 4, Fig. 5.
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Time-resolved imaging of singularities. We designed a Kerr-gate imaging setup with ~um optical
resolution, all-reflective microscope objective to preserve high temporal resolution, and 50 fs gate pulse.
For higher optical resolution and higher rejection ratio of the gate beam, we selected imaging of singularities
self-emission at 400 nm, while keeping the gate beam at original laser wavelength of 800 nm, Fig. 6.
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Astra experiment (UK). The first joint international experiment was performed with the Astra laser in
CLF RAL, UK (0.35 J, 50 fs, 7 TW). Due to the high quality of our science case and complexity of
diagnostics, we were given 13 weeks of the beam time. That allowed to implement the complex setup,
including few-pm-resolution optical probe, Kerr-gated Top View (TV) imaging, 3-channel on-axis
spectrograph 3FF (17-34 nm), and 4D off-axis XUV spectrograph (12.4-20 nm), for simultaneous
diagnostics of BISER x-rays and singularities, Fig. 7, Fig. 8. Due to the COVID-19 restrictions before and
at the beginning of the experiment, the probe pulse was not shortened to 10 fs (50 fs was used).

The Kerr-gated Top View achieved ~1 pm resolution, Fig. 9a. The gate timing was scanned and the signal
candidates found, Fig. 9b-e. However, the noise level was quite high, and several artifacts in the gated
images were identified (caused by secondary reflections, crossed polarizers leakage, and different band-
pass filters in the two channels). The analysis is now on-going to clarify the origin of all signal candidates.

We implemented for the first time a 4D XUV spectrograph based on aperiodic broadband multilayer mirror
(our design based on [Pirozhkov and Ragozin, Phys. — Usp. 58, 1095 (2015)]) and large-gradient Varied
Line Space (VLS) grating (our design based on [Koike et al., JESRP 101-103, 913 (1999)]). The
spectrograph provided a spatially-resolved spectrum (spatial resolution up to 8 pm, spectral resolving power
up to 300) in its 1%t spectral order and 2D angular distribution in its 0" order. Important data on BISER
source properties were obtained with this new instrument. A paper with the results is now in preparation.

Taking advantage of our advanced diagnostics, we managed to increase the BISER brightness ~100 times
compared to the earlier experiments with similar laser powers (~10-20 TW). This significant result is now
in preparation for publication; it was reported at 2023 Annual Meetings of JPS and JSAP, and at OPIC-
2023 and (invited talk) at SPIE OOE-2023 International Conferences.



J-KAREN-P experiment (Japan). The second joint international experiment was performed with the J-
KAREN-P laser [Pirozhkov et al., Opt. Express 25, 20486 (2017); Kiriyama et al., HPLSE 9, €62 (2021)]
in KPSI QST, Japan. We implemented a compact in-vacuum CafCA setup for probe compression, Fig.10ab,
and within a short experimental campaign managed to compress the probe from 50 down to minimum of
18 fs, which amounts to ~5.4 um motion blur, Fig.10cd. The results are submitted to Optics Express [10].
Modification of this setup with 10 fs probe capability will be used in the next experimental campaign of
our Root Project in FY2023.
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Additional research results. In addition to the results and achievements which were planned, our
international team actively performed broad-scope research on relativistic plasma, singularities, and their
bright x-ray emission. We showed by PIC simulations that singularities emitting BISER can efficiently
reflect a counter-propagating pulse, generating laser harmonics with Doppler-boosted frequency [2]. We
performed fundamental research on relativistic flying mirror singularities, including simulations of their
reflection [5], prospects for ultra-high-field science [7], and Analog Black Hole Evaporation via Lasers [8].
We developed x-ray instruments for relativistic plasma diagnostics, including broadband Mo/Be normal-
incidence multilayer mirrors [3] and hard x-ray linear absorption spectrometer and its data deconvolution
method [4]. We demonstrated experimentally several methods of precise on-target ultra-relativistic intensity
maximization (submitted to Optics Express, preprint [9]). Finally, our research on singularities allowed us
to discover a new phenomenon, alloharmonics (submitted to Nature Physics, preprint [11]).
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