

科学研究費助成事業(科学研究費補助金)研究成果報告書

平成25年 5月31日現在

機関番号:12608				
研究種目:基盤研究	(B)			
研究期間:2008~2012				
課題番号:20300175				
研究課題名(和文)	造影剤濃度と被ばく線量の低い重粒子線励起二波長パルス×線による 血管動画撮影			
研究課題名(英文)	Cineangiography Using Particle-Induced Dual-Wavelength			
	Pulsed-X-rays for Minimization of Dosages of Contrast Medium			
	and Radiation			
研究代表者				
小栗 慶之 (OGURI YOSHIYUKI)				
東京工業大学・原子炉工学研究所・教授				
研究者番号:90160829				

研究成果の概要(和文):異なる二種類の金属標的を取り付けた回転式ターゲットを MeV 陽子ビームで照射し,造影剤の吸収端前後の異なるエネルギーを持つ準単色パルス X 線を交互に発生した.この X 線を用いて造影剤入りファントムの透視動画撮影を行った.隣接するフレーム間の差分を取ることで,造影剤のみを強調した動画を再構成することができた.これにより,動画造影法における造影剤濃度と X 線被ばく線量を低減できる原理的見通しが得られた.

研究成果の概要 (英文): We irradiated a rotating target with two metallic plates made of different elements by a MeV proton beam, and alternately produced quasi-monochromatic pulsed X-rays with two different energies: one was lower and the other was higher than the absorption-edge energy of the contrast medium. A cineradiograph of a phantom containing contrast medium was taken using these pulsed X-rays. A moving image which emphasized only the contrast medium was reconstructed by taking the difference between the adjacent frames. From this result, we found that the contrast-medium concentration and the X-ray dose for cineangiography could be reduced by applying this method.

交付決定額

			(金額甲位: 円)
	直接経費	間接経費	合 計
2008 年度	2, 400, 000	720,000	3, 120, 000
2009 年度	1,600,000	480,000	2, 080, 000
2010 年度	7, 900, 000	2, 370, 000	10, 270, 000
2011 年度	1,700,000	510,000	2, 210, 000
2012 年度	1, 100, 000	330, 000	1, 430, 000
総計	14, 700, 000	4, 410, 000	19, 110, 000

研究分野:総合領域

科研費の分科・細目:人間医工学・医用システム

キーワード:荷電粒子励起特性 X 線,静電加速器,造影剤,動画撮影,二波長差分法,高コントラスト撮影,被ばく線量,電子増倍型 CCD カメラ

1. 研究開始当初の背景

造影剤を用いた X 線透視撮影法は、心臓や脳 等の血管の診断に不可欠な手法である.特に 心血管の診断には動画撮影が強力なツール であり、その高性能化が求められている.K

吸収端前後の波長で造影剤による X 線の吸収 が大きく変ることを利用した高コントラス ト静止画撮影については、データ解析手法も 含めて国内外で既に多数の研究が発表され ている.しかしシンロトロン放射光を用いず

(人婿光侍,四)

に X 線を最適な波長に単色化し、更に一パル スずつ波長を変化させて時々刻々差分を取 りながら動画撮影を行うアイデアは従来提 案されていない、一方、電子線の代わりに陽 子ビーム等の荷電粒子線を金属標的に照射 すると、制動放射が殆ど起こらないため準単 色の特性 X線のみが得られる.研究代表者ら は今までにルテニウム(Ru)及びヨウ素造影 剤を用いて低濃度、低線量かつ高コントラス トの静止画撮影を実現し、陽子ビーム励起二 波長差分法の有効性を実証した.しかし,動 画撮影等の時間分解測定には、高速にエネル ギーの切り換えができる強いパルス X 線源が 必要である.今回,直流陽子ビームを照射し ながら金属ターゲットを機械的に高速回転 することで、異なる波長のX線をパルス状に 交互に発生するという着想を得て、本研究の 申請に至った.

2. 研究の目的

造影剤を注入した模擬心臓を試験用水ファ ントム内で動かしながら、上記の荷電粒子励 起パルスX線による二波長差分動画撮影を試 みる.並行して、この撮影に必要な強度を有 する点状準単色X線光源を得るための陽子ビ ーム加速器系の改良を行う.システムとして の性能を評価し、これらの結果より、造影剤 注入量と被ばく線量を同時に低減できる高 コントラスト医療用X線動画透視撮影技術と して本方法を実用化する際に解決すべき課 題の抽出を行う.

- 3. 研究の方法
- (1) 2008 年度

本研究に不可欠な高い特性X線強度を得るた め,一次重粒子(陽子)ビームの出力増強, 専用ビーム輸送・集束・照射系の構築、及び その予備的な試験を行った.経年変化により 性能が著しく低下していた既設セシウムス パッタ負イオン源の部品交換と整備を行い, ビーム出力の増強を図った.まずスパッタリ ングによる負イオン発生に用いる一次セシ ウムビームを供給するセシウムアイオナイ ザーをサンドブラスト等により徹底的に洗 浄した.また負水素イオンの発生源となる水 素化チタン陰極の冷却に用いられるフレオ ンループのポンプを更新して冷却性能を向 上させた. さらに陰極位置の微調整, 及びア イオナイザー、アインツェルレンズ等各構成 要素の再アライメントを入念に行った.次に 静電タンデム加速器にこの負水素イオンビ ームを入射し, 陽子ビームとして 3 MeV まで の加速試験を行った.並行して新しい専用ビ ームコースを建設し, X 線発生用ターゲット の直前までのビーム輸送試験を行った. 点状 のX線光源を得ることを念頭に、このビーム を試験的に内径 1 mm, 出口径 10 μm 程度の ガラスキャピラリーに入射して集束し,金属 細線ターゲットに照射してビーム径の測定 評価を行った.

(2) 2009 年度

前年度に引き続いて,二波長パルス X 線発生 用回転金属ターゲットに照射するエネルギ ーが最大 3 MeV, ビーム電流が最大 10 μA ま での直流陽子ビームを発生するための加速 器の運転条件の最適化を行った、ビームライ ン上のターゲット真空容器の上流に設置し た三連四重極電磁石を用いてビームを集束 させた. X線撮影に必要な点状 X線源を得る ため、上記のガラスキャピラリーにこのビー ムを通して集束させた.一方,予備実験のた めの造影剤として鉄(Fe;原子番号26)を仮 定し、この K 吸収端(エネルギー 7.1 keV) 前後の波長(エネルギー)を有する特性 X 線 を発生する鉄 (KαX線エネルギー 6.4 keV) 及びニッケル (Ni;原子番号 28;KαX 線エ ネルギー 7.5 keV) 板を X 線源として採用し た.円周上の対向する2点にこれらの金属板 を固定できる回転式ターゲットを設計、製作 した. このターゲットを真空容器内で回転さ せるために高真空用ステッピングモーター と PC を用いた遠隔操作機構を製作した.

(3) 2010 年度

昨年度までに開発した円盤状回転ターゲットを用いて二波長パルスX線の発生試験を行った.専用の真空容器を設置し,これらの低エネルギーX線を大気中に取り出すための厚さ50 µmのマイラー窓を取り付け,真空試験を行った.次にターゲットを真空中でステッピングモーターにより回転させながら,エネルギー2 MeV,ビーム電流100 nA 程度の陽子ビームを照射した.電子冷却型 CdTe-X線検出器を用いて,発生するX線のエネルギースペクトル測定を行った.並行してX線用 Ce(セリウム):YAGシンチレータと高感度電子増倍型 CCD カメラを用いた透視動画撮影の準備を行った.このために専用の架台を製作して真空容器に固定した.

(4) 2011 年度

まず X 線透過画像の低ノイズ化のために, Ce:YAGシンチレータ本体及び高感度 CCD カメ ラとの接続部について,アルミ箔を用いて遮 光を入念に行った.前年度までに開発した円 盤状回転ターゲットに,ビーム位置合わせ用 の石英シンチレータと試験用金属標的を取 り付けて調整後,2.0~2.5 MeV の陽子ビーム で照射し,X 線収量を求めた.透視画像の動 画撮影実験のための試験用ファントムとし て,水を満たしたプラスチック水槽内に小径 のゴム管を置き,定量ポンプを用いて管内に 造影剤水溶液を一定速度で流す機構を準備 した.このファントム専用のアダプダーを製 作して真空容器と X 線カメラ間に固定した. これら異なる波長の X 線で撮影した隣接する フレーム同士のカウントの差を計算して差 分画像を作成するプログラムの開発も行っ た.厚さ5mmの水ファントムを想定し、X線 強度と透過率のバランスを検討して、動画撮 影実験に用いる金属標的及び造影剤元素の 種類を選択した.これらを用いて 0.01~0.1 秒程度の動画の一フレームを撮影する予備 実験を行った.

(5) 2012 年度

前年度に製作した水ファントムにおいて,小 径ゴム管の先端に小型ゴム風船を取り付け てポンプにより膨張・収縮させ,心臓の動き を模擬した.また加速器のコンディショニン グにより加速電圧の安定化を図り,2.5 MeV の陽子ビームを安定に発生できるよう再調 整を行った.ビームを回転ターゲットに照射 して二波長準単色パルスX線を発生し,ファ ントムの動画撮影を行った.実験のセットア ップを図1に示す.異なるエネルギーのX線 で撮影された隣り合うフレーム同士の差分 を取って動画を再構成し,造影剤が最も強調 される条件を調べた.

- 4. 研究成果
- (1) 2008 年度

セシウムアイオナイザー表面の付着物を除 去することによって,一次セシウムビームの 強度を大幅に増大させることができた.これ らの結果、負水素イオンビーム電流を最大5 μA(前年度までの約10倍)まで復帰させる ことができた.これにより、加速器出口のビ ーム電流を3 µA程度まで増強することがで きた、また、ビーム輸送・分析系の入念な最 適化調整の結果,ターゲット直前の最大ビー ム電流として約 1 μA を得た. これにより, 少なくとも血管の高分解能静止画撮影に十 分な強度を持つ単色 X線源が得られる見通し が得られた.一方,ガラスキャピラリーを用 いた陽子ビーム集束予備試験の結果、キャピ ラリー出口でビームを 10 μm 程度まで集束 できることも分かった. (2) 2009 年度

陽子ビーム集束系の最適化調整により,ガラ スキャピラリー手前でビーム径を 1 mm 程度 まで集束することができた.このビームをキャピラリーに通し、出口で 10 μm 程度のビーム径を得た.しかし、現時点では強度が十分でなく、また場合によっては陽子ビーム照射による発熱でキャピラリーが溶解することも明らかになった.ビーム透過率と出射時のエネルギースペクトルの測定結果は、モンテカルロ法を用いた数値計算の結果と良く一致した.二波長パルスX線発生用回転金属ターゲットの真空試験と PC を用いた制御系を介した動作試験を行って所定の性能を確認した.

(3) 2010 年度

回転ターゲットに直接2 MeV陽子ビームを照 射し,ビーム電流約1 µA,ビーム径1 mmを 得た.赤外線温度計で照射面の温度を測定し たところ,この程度のビーム強度であれば, ターゲットの発熱は放射冷却により十分除 去できることが分かった.X線エネルギース ペクトル測定の結果,実際にエネルギーの異 なるFe-K α X線とNi-K α X線からなる二波長 の準単色パルスX線を交互に発生できること を確認した.しかし,X線を可視光に変換す るCe:YAGシンチレータ取り付け部の遮光設 計が十分でなかったため,外部光の侵入によ るノイズが発生し,予定していた陽子ビーム 励起X線を用いた撮影性能の予備的な評価に は至らなかった.

(4) 2011 年度

Ce: YAG シンチレータ及び CCD カメラとの接続 部の遮光を入念に行った結果、バックグラウ ンドを予定のレベルまで下げることに成功 した,一方,X線の透過率等を考慮し、実際 に水ファントムの撮影に用いる二波長 X 線源 として、ジルコニウム (Zr; K a X 線エネルギ ー 15.7 keV) 及びニオブ (Nb; KαX 線エネ ルギー 16.6 keV) 標的を採用した. また, 造影剤はストロンチウム (Sr; K 吸収端エネ ルギー 16.1 keV) 化合物に決定した. これ らを用いて予備的な一フレームの撮影実験 を行ったが、実験時に加速器の加速電圧とイ オン源出力が不安定であったため、十分な X 線強度が得られなかった.代わりに露光時間 が数10秒の静止画撮影試験を行い、X線エネ ルギーと造影剤の組み合わせにより、造影剤 のコントラストが大きく変化することを確 認できた.

(5) 2012 年度

加速器系の再調整により, エネルギー2.5 MeV, ビーム電流約 1µA の陽子ビームを安定に発 生し, 露光時間 1 秒程度の差分動画撮影に成 功した. その際に測定した X線のエネルギー スペクトルと Sr 造影剤の K吸収端構造を図 2 に示す. X線エネルギーの異なるフレーム間 の差分計算における規格化定数を最適化調 整することにより, バックグラウンドをほぼ 完全に消去し,造影剤のみを強調した 17 フ レームの動画を再構成することができた.結 果の一フレーム分を図3に示す.一方,この 結果により実用化にはX線エネルギーの増大 だけでなく,少なくとも数十倍のX線強度が 必要であることが分かった.高感度X線動画 カメラによるX線検出効率の実測値は、シン チレータの発光効率,蛍光の集光効率,CCD 内の電子増倍率等を考慮した計算の結果と ほぼ一致した.

図 2: X 線エネルギースペクトルと Sr 造影剤の K 吸収端構造

図3:二波長差分動画の一フレーム

5. 主な発表論文等

〔雑誌論文〕(計2件)

- Y. Oguri, Y. Hu, K. Kondo, H. Fukuda, and J. Hasegawa, "Digital Subtraction Cineangiography Using Proton-Induced Quasi-Monochromatic Pulsed X-Rays", Int. J. PIXE, 掲載確定.
- D. Hasegawa, S. Jaiyen, C. Polee, N. Chankow and <u>Y. Oguri</u>, "Transport Mechanism of MeV Protons in Tapered Glass Capillaries", J. Appl. Phys. 110 (2011) 044913-1-9, DOI:10.1063/1.3624617.

〔学会発表〕(計2件)

- 小栗慶之,胡 宇超,近藤康太郎,福田一志,<u>長谷川純</u>,「陽子線励起準単色 X 線を用いた二波長差分法による血管動画造影の基礎研究」,第 28 回 PIXE シンポジウム,2012 年 11 月 7 日~9 日,東京工業大学.
- ② 小栗慶之,胡 宇超,近藤康太郎,福田一志,長谷川純,「被ばく線量と造影剤投

与量の低い陽子線励起二波長パルス X 線 による血管動画撮影」,日本原子力学会 2012 年秋の大会予稿集,K09,2012 年 9 月 19日~21日,広島大学東広島キャンパ ス.

- 6. 研究組織
- (1)研究代表者 小栗 慶之(OGURI YOSHIYUKI) 東京工業大学・原子炉工学研究所・教授 研究者番号:90160829
 (2)研究分担者 長谷川 純(HASEGAWA JUN) 東京工業大学・総合理工学研究科(研究 院)・准教授 研究者番号:90302984 堀岡 一彦(HORIOKA KAZUHIKO) 東京工業大学・総合理工学研究科(研究 院)・教授 研究者番号:10126328