科学研究費補助金研究成果報告書

平成23年6月3日現在

機関番号:12612 研究種目:基盤研究(研究期間: 2008 ~ 課題番号:20340104 研究課題名(和文)	B) 2010 フェムト秒 Yb 添加セラミックレーザー光源の最短パルス高強度化研究
研究課題名(英文)	High-power ultrashort pulse laser source based on Yb-doped ceramic material
研究代表者 植田 憲 電気通信大学・レーザ 研究者番号:10103938	ー (UEDA KENICHI) 一新世代研究センター・教授

研究成果の概要(和文):複数の Yb 利得媒質を用いた複合利得媒質セラミック超短パルスレー ザーを開発し、約53fsのパルス幅で1W以上の出力を得た。また高出力化の為に薄型ディス クレーザーを開発し、連続発振で70W出力が得られた。超短パルスレーザー構築・評価の為 の各種計算コードの開発も行った。

研究成果の概要(英文): 53-fs pulses with above 1-W average power were obtained from combined Yb doped active gain media ceramic laser. 70-W average power continuous laser operation was achieved based on thin-disk laser system. Numerical simulation codes to calculate and evaluate ultra-short pulse laser operation were also constructed.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2008 年度	12,000,000	3, 600, 000	15, 600, 000
2009 年度	1,700,000	510,000	2, 210, 000
2010 年度	1,500,000	450,000	1, 950, 000
年度			
年度			
総計	15, 200, 000	4, 560, 000	19, 760, 000

研究分野:量子エレクトロニクス

科研費の分科・細目:物理学、原子・分子・量子エレクトロニクス・プラズマ キーワード:薄型ディスクレーザー、カーレンズモード同期、LD 励起超短パルスレーザー

1. 研究開始当初の背景

高出力超短パルス光源は理化学研究の応用 のみならず、産業応用、例えば非熱超微細加 工、透明材料の三次元加工などが考えられて いる。Yb添加媒質を用いた超短パルスレー ザー光源は、安価で高出力な次世代超短パル ス光源の最有力候補と期待されている。

我々は Yb 添加媒質を用いた超短パルスレ ーザー光源の開発を 2000 年から継続して行 っており、近年は特に Yb 添加希土類三二酸 化物(Re₂O₃,Re=Y, Lu, Sc)系セラミック媒質を 用いた超短パルスレーザー光源の研究開発 を行ってきた。希土類三二酸化物は商業用固 体 レー ザー に 広 く 用 い ら れ て い る $Y_3Al_5O_{12}(YAG)$ や $KY(WO_4)_2$ (KYW)と比べ、前 者に対しては約 1.5 倍の熱伝導率と約 2 倍の 蛍光自然幅を有し、後者に対しては約 4 倍の 熱伝導率と約半分の蛍光自然幅を有してい る(次頁表 1)。そのため高出力レーザーへの応 用は期待できるが 100 fs を切るような超短パ ルスレーザーへの応用は難しいと考えられ ていた。しかし我々は本研究を開始した時点 において、カーレンズモード同期共振器を利 用することにより Yb 添加希土類三二酸化物 を用いて 1W 程度の中出力動作において、、限 界と考えられていたパルス幅 100 fs を超える 超短パルスレーザー動作に成功していた。こ の大幅な性能の向上は前述のカーレンズ効 果を用いてレーザー共振器に非常に大きな 損失・利得変調を加えた事によるところが大

表1. Yb 添加希土類酸化物(Yb:Re₂O₃, Re=Y, Lu, Sc)と Yb:YAG、Yb:KYW との比較

媒質	Y_2O_3	Lu_2O_3	Sc_2O_3	YAG	KYW
熱伝道率 (W/mK)	13.6	10.9	12.5	9.9	3.5
自然蛍光幅 (nm)	15	13.5	11.5	8.5	~25
フーリエ限界 パルス幅(fs)	74	86	99	139	44
本研究以前の パルス幅	188	210	220	335	71
本研究の パルス幅	68	68	64	120	

きいと考えられていたが、定性的な物理から 予測される議論内にとどまっていおり、定量 的な評価が望まれていた。また研究開始当時、 単結晶材料を用いた超短パルスレーザーに 比べ我々のカーレンズモード同期超短パル スセラミックレーザーの性能が遥かに優れ ていた為、同様の動作が単結晶媒質を用いて も可能かという高い関心が存在していた。

2. 研究の目的

本研究においては、我々が培ってきた超短パ ルス技術に新たに高出力レーザー技術を加 えて、高出力超短パルスレーザー光源の開発 を目指した。また本研究で開発する高出力レ ーザー技術は、超短パルスレーザー発振器へ の応用のみならず、多種の科学技術研究およ び産業応用の為の、我が国の高出力固体レー ザー光源開発(高出力 CW 発振器、CW 増幅 器、超短パルス増幅器)における基盤技術に 繋がる事を期待した。

高出力化(>10W)を目指すにあたり、具体的な目的課題を挙げると以下のようになる。(1)①既存の共振器構成を用いたの実験の最適化、②セラミック媒質と単結晶媒質との比較、③新材料を用いたレーザー開発。(2)①熱レンズ効果、及び非線形カーレンズ効果を考慮した共振器条件計算コード開発、②超短パルスレーザー動作の定量的な計算コード開発、(3)熱効果と非線形レンズ効果の影響を抑制する為の新規レーザーシステム(薄型ディスクレーザー)開発。以下上記項目について記述していく。

3. 研究の方法

(1)①既存の共振器構成を用いたの実験の 最適化。同一共振器内で異なる二つの Yb 添加媒質、Yb³⁺:Y₂O₃ と Yb³⁺:Sc₂O₃を同時に用い 非線形効果と、利得帯域幅の制御を行った複 合利得媒質セラミックレーザーについて最 適化を行った。利得特性の大きく異なるレー ザー媒質を同一共振器内で同時に用いると、 レーザー発振の競合が起こり易く安定な超 短パルス発振は得がたいとされていたが、Yb 添加希土類三二酸化物同士では比較的蛍光 のピークが近く、蛍光断面積の値も近い為に、 適切な複合比で用いる事により(図1)、広帯 域で平坦な利得の利用を可能とし実験を行った。また Broad stripe LD 励起において十分なカーレンズ効果を得るために共振器の非 点収差を調整し、更にレーザー共振器を不安 定状態に近い状態で動作させた。この共振器 については後述の(2)①の共振器計算コード を用いて計算を行いカーレンズ効果の大き さの評価も行った。

図 1. Yb³⁺:Y₂O₃と Yb³⁺:Sc₂O₃単体、及び同時に用い た時の利得断面積。αは Y₂O₃の量、(1-α)は Sc₂O₃ の量、βは反転分布の大きさを示す

②セラミックス媒質と単結晶媒質の比較。単 結晶 Yb 添加希土類三二酸化物 Yb³⁺:Lu₂O₃、 Yb³⁺:Sc₂O₃をドイツハンブルグ大学 Huber 研 より入手し、Yb³⁺:Y₂O₃セラミックと共に、ほ ぼ同ーな共振器条件で実験を行い超短パル スレーザー動作時の特性を比較した。また関 連して Lu₂O₃ セラミック材料の機械強度測 定も行った。各種材料の非線形定数の測定も 行った。

③新材料を用いたレーザー開発。神島化学工業との共同研究により、新規セラミック材料 Yb³⁺:(YGd₂)Sc₂(GaAl₂)O₁₂ disordered について 分光特性を評価し、さらに半導体可飽和吸収 体モード同期発振、カーレンズモード同期発 振を行った。この媒質はガーネット系の結晶 構造(図 2)を有し、優れた機械強度及び熱特性 が期待できる。またその Disorder 構造により 利得帯域が広帯域化し易く、希土類三二酸化 物にならんで高出力超短パルスレーザー光 源用の利得媒質として期待できる。

図 2. (YGd₂)Sc₂(GaAl₂)O₁₂の結晶構造

(2) ①熱レンズ効果、及びカーレンズ効果 を考慮した共振器条件計算コード開発。 計算 方法としては一般的な ABCD 行列を基礎と し、静的な光学機器を示す行列に加えて、熱 レンズ効果(結晶中での温度分布から発生す るレンズ効果)、カーレンズ効果(レーザー光 軸上断面の電界強度分布から発生するレン ズ効果)示す行列を導入した。また非線形カー レンズ効果は共振器条件によって決まるビ ーム径によって大きく影響を受けるので(図 3)、各々にフィードバックをかけて解が収束 するまで行列計算をループさせる事により 求めた。

図3. 共振器内ビーム径とカーレンズ効果の依存性

②超短パルスレーザー動作<u>の定量的な計算</u> コード開発。任意の共振器中における超短パ ルス動作の可能性を評価する為、共振器中の パルス光の振る舞いを示す非線形シュレー ディンガー方程式を、スプリットステップフ ーリエ法(SSF)と呼ばれる方法を用いて計算 した。SSF ではフーリエ変換により時間領域 においては、カーレンズ効果による利得損失 変調効果及び自己位相変調効果によるスペ クトルの広帯域化の影響を計算し、周波数領 域においては利得媒質によるスペクトルの 変化及び媒質の分散効果による影響を計算 している。この計算コードを使い、共振器の 分散、自己位相変調、カーレンズ効果による 変調深さ、利得幅などをパラメータとして変 化させたときの共振器内パルスの振る舞い 計算を行った。

(3) 熱効果と非線形レンズ効果の影響を抑制 する為の新規レーザーシステム(薄型ディス クレーザー)開発。超短パルスレーザー光源 を高出力化させるために薄型ディスクレー

ザーの開発を行った。薄型ディスクレーザー では利得媒質を薄くし、それをヒートシンク に直接接合し、1 次元方向への排熱を可能と する事により、利得媒質内で発生する非線形 効果と熱に起因する諸問題を軽減する事が 可能となる。利得媒質とヒートシンクの接合 には InSn 半田を用いる事とした。InSn は AuSn 半田などに比べて融点が低く、濡れ性 が高い為に比較的容易に媒質とヒートシン クの接合がおこなえる。接合後の利得媒質は 自作の干渉計を用いて波面の歪みを励起時、 非励起時に測定し、十分に効率的な冷却が行 われている事を確認した。ヒートシンクは利 得媒質接合部の背面部に凹凸の微細構造を 取り付け、そこに冷却用の水流を垂直にあて て乱流を発生させることにより、効率的な排 熱が行えるようにした。結晶の励起方法とし ては16回(写真1)または24回のマルチパ ス励起システムを用いている。また薄型ディ スクレーザーでは非線形効果(自己位相変調 効果によるスペクトル広がりの効果が)抑制

写真1.16 パスマルチ励起システム

される為に、超短パルス動作が制限される事 が考えられた為、それについて(2)②の計算コ ードを用いて評価した。

(4)上記以外に並行して行った研究。

径偏光レーザーやラゲールガウシアン モードレーザーは、その得意な偏光特 性から加工分野や医療分野において 様々応用が考えられるようになってき ている。超短パルスレーザーにおいてき 径偏光モードで発振できないかというよう な要望が以前より存在していた為、これら発 振モードのレーザー研究も行った。偏光特性 の制御はフォトニック結晶ミラーや共 振器内部に大きな球面収差を有するレ ンズを配置する事により行い、利得媒 質を用いた。

4. 研究成果

(1) ①既存の共振器構成を用いたの実験の 最適化。安価なLD直接励起という条件の下、 パルス幅53fs、出力1W、及びパルス幅66fs、 出力1.5Wを得るに至った[論文4]。これは 2009年までに報告されていた全てのYb添加 系結晶におけるサブ100fs超短パルスレーザ ー光源においての最大出力であり、また Ti:Al₂O₃レーザー励起を含め、Yb添加固体レ ーザーの共振器からの直接発生における世 界最短パルスの発生に成功した。さらに効率 においても他の報告を大きく凌駕している (図4)。Yb添加系材料では困難と考えられて いた100fs以下の短パルス領域で高出力、高 効率発振を実証し、Yb添加固体レーザーの 性能を一躍向上させることとなった。これら

図 4.これまで報告されている様々なモード同期 Yb 添加 固体レーザーの平均出力(左)および光-光変換効率(右)を パルス幅に対してプロットしたもの。左上に行くほど望 ましく、円で囲まれたデータが我々の結果を示す。

の結果はまだ最適化の余地があり、特に共振 器構成を大きく帰ることにより、一層の高出 力化、高効率化、短パルス化が見込まれる。 ②セラミック媒質と単結晶媒質との比較。単 結晶、セラミックすべてにおいて出力 500m W 以上で 70fs 以下の超短パルス発生に成功 した(表 2)。これにより短パルス発生におい ては単結晶とセラミックに大きな差は存在 しない事がわかったが、今後のより一層の高 出力化を進めていく上ではセラミック材料 のサイズ拡大則と高い熱破壊閾値が有利に 働くと考えられる。さらに最適化を進めるこ とにより 80fs 以下のパルス幅で1W以上の 出力を得ることに成功した [論文 2]。また、 このときモード同期発振の長期安定性も評 価し数時間以上にわたり安定に発振できる 事を確認した。

表 2. 同一共振器を用いた、単結晶とセラミックでの 超短パルスレーザー発振結果

Material	Δt (fs)	P (mW)	Pump
Sc ₂ O ₃ crystal	64	640	Fiber Coupled LD
Lu ₂ O ₃ crystal	68	540	Fiber Coupled LD

③ 新材料を用いたレーザー開発。 Yb³⁺:(YGd₂)Sc₂(GaAl₂)O₁₂ disordered)は同様の ガーネット構造のYAGと比べて約1.5倍の利 得帯域を有している事が分かった。モード同 期を発振実験においては出力820 mW、パル ス幅 69fsを得るに至った。また短パルスを進 めていくにあたり発振スペクトルの長波長 方向へのシフトが確認された(図5)[論文3]。 この現象は後述の計算機コード(2)②を用い ても確認する事ができた。

図 5 Yb³⁺:(YGd₂)Sc₂(GaAl₂)O₁₂発振スペクトル

(2) ①熱レンズ効果、及び非線形カーレン ズ効果を考慮した共振器条件計算コード開 発、作製した計算コードより、熱レンズを考 慮した任意の共振器構成における、共振器状 態、カーレンズ効果の大きさを計算できるよ うになった。計算結果の一例を示すと図6に 示されるような共振器構成で、図7に示され るような共振器内ビーム径が得られる事が 確認された。これらの計算は高出力化に伴う ビーム径の拡大、励起光とのモードマッチン グの最適化、カーレンズ効果を見積もるうえ で非常に重要である。

図7. 共振器内励起光ビーム径、レーサー光ビー ム径(CW)、レーザー項ビーム径(パルス)の比較

②超短パルスレーザー動作の定量的な計算 コード開発。図8に計算された、共振器周回 に置けるスペクトルの変化を示す。分散量が -1300 fs² の時は安定な超短パルス発振を示 すが、分散量を-1200 fs²に変化させると不安 定になり超短パルス発振が得られない事が わかる。利得幅を固定した時の、変調深さと、 限界短パルス幅の関係を図 9(a)、変調深さを 固定した時に、分散量とパルス幅の関係を図 9(b)に示す。図 9(b)には参考の為に単純なソ リトン条件から得られるパルス幅も示して あり、両者で多少の違いは有るが近い値が得 られている事がわかる。この計算では SSF では共振器内の分散補償が完璧ではない位 置でのパルス幅を計算しているため、パルス 幅がソリトンでの計算結果よりも幾分長め に出ているが、分散補償後を考えるとカーレ ンズモード同期では利得損失変調による時 間空間中でのパルス成型効果が大きい為、ソ リトン条件よりも短いパルスなることも計 算された。また薄型ディスクレーザーにおい

図8. 共振器周回におけるスペクトル変化。奥行き 方向の軸が共振器周回数を示す。 (a) 変調深さ0.1、分散量-1300 fs²、利得幅 16 nm (b) 変調深さ0.1、分散量-1200 fs²、利得幅 16 nm

図 9. (a)共振器内変調深さと限界パルス. (b) 共振器内分散量とパルス幅の関係幅

ては自己位相変調効果が弱まる為に安定な 短パルス発生が難しくなる可能性が考えら れたが、計算上は変調深さを十分にとれれば 100 fs 程度の短パルス発振が可能と考えられ る事がわかった。

(3) 熱効果と非線形レンズ効果の影響を抑 制する為の新規レーザーシステム(薄型ディ スクレーザー)開発。励起光源に140 Wのフ ァイバー結合 LD を使用し、直線型共振器を 用いて、スロープ効率70%、出力70 Wを得 ることに成功した(図 10)。測定されたビー ム品質 M²の値は33 であった。連続発振では あるが熱的影響を抑制し、Yb:Y₂O₃ セラミッ クを用いた高出力動作に始めて成功した。こ の出力は前述の共振器シミュレーションに おいて十分な非線形効果を誘起するのに十 分な値となる。現在共振器をモード同期用に 改良し、半導体可飽和吸収体、分散補償素子、 横モード制御を加えた共振器構成でレーザ 一実験を行っている(前項図 6)。

図 10. 薄型ディスクレーザー出力特性

(4)上記以外に並行して行った研究。フォト ニック結晶ミラーを用いたマイクロチ ップ径偏光レーザーを開発した。開発さ れたレーザーは非常に小型でシンプル な構成であり、パルス発振にも成功した。 また共振器内に球面収差を大きく有す るレンズを利用した実験ではラゲールガ ウシアンモードレーザー発振にも成功した。

5. 主な発表論文等

〔雑誌論文〕(計22件)

[1] M. P. Thirugnanasambandam, Y. Senatsky, and <u>Ken-ichi Ueda</u> "Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal." Opt. Express 19 1905-1914 (2011) 查読有

[2] M. Tokurakawa, <u>A. Shirakawa, K. Ueda</u>, R. Peters, S. T. Fredrich-Thornton, K. Petermann, and G. Huber, "Ultrashort pulse generation from diode pumped mode-locked Yb³⁺:sesquioxide single crystal lasers," Opt. Express **19**, 2904-2909 (2011) 査読有

[3] M. Tokurakawa, H. Kurokawa, <u>Ae.</u> <u>Shirakawa, K. Ueda</u>, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Continuous-wave and mode-locked lasers on the base of partially disordered crystalline Yb^{3+} :{YGd₂}[Sc₂](Al₂Ga)O₁₂ ceramics," Opt.

Express 18, 4390-4395 (2010) 査読有

[4] M. Tokurakawa, <u>A. Shirakawa</u>, <u>K. Ueda</u>, H. Yagi, M. Noriyuki, T. Yanagitani, and A. A. Kaminskii, "Diode-pumped ultrashort-pulse generation based on Yb³⁺:Sc₂O₃ and Yb³⁺:Y₂O₃ ceramic multi-gain-media oscillator," Opt. Express **17**, 3353-3361 (2009) 査読有

[5] <u>植田 憲一</u>「セラミックレーザー」OplusE 33 1262-1269 (2009) 査読有

[6] J. Li, <u>K. Ueda</u>, L. Zhong, M. Musha, <u>A.</u> <u>Shirakawa</u>, and T. Sato, "Efficient excitations of radially and azimuthally polarized Nd³⁺:YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb₂O₃/SiO₂," Opt. Express **16** 10841-10848 (2008) 査読有

[7] J. Li, <u>K. Ueda</u>, M. Musha, L.Zhong, and <u>A. Shirakawa</u>, "Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser," Opt. Lett. **33** 2688-2670 (2008)
[8] 植田憲一、「発展する高出力セラミックレーザー」応用物理 **77** 111-122 (2008) 査読有
[9] J. Dong, <u>K. Ueda</u>, and A. A. Kaminskii, "Continuous-wave and Q-switched microchip laser performance of Yb:Y₃Sc₂Al₃O₁₂ crystals," Opt. Express **16**, 5241-5251 (2008) 査読有

[10] A. A. Kaminskii, H. Rhee, H. J. Eichler, <u>K.</u> <u>Ueda</u>, T. Takaichi, <u>A. Shirakawa</u>, M. Tokurakawa, J. Dong, H. Yagi, and T. Yanagitani, "Mechanical and optical properties of Lu₂O₃ host-ceramics for Ln³⁺ lasants," Laser Phys. Lett. **5** 300-303 (2008) 査読有

〔学会発表〕(計27件)

[1] <u>K. Ueda</u>, "Critical issues on ultra-high intensity solid state lasers, "Route toward Reality", JSPS Asian CORE Workshop on Next Generation Ultra-Short Pulse Lasers for High Field and Ultrafast Science, (invited) Mar.3, 2011, Wako-RIKEN, Japan

[2] <u>K. Ueda</u>, "Toward ultra intensity lasers," 6th Laser Ceramic Symposium, Dec.6-8, 2010. Münster, Germany [3] <u>K. Ueda</u>, "High power ceramic lasers, last 10 years," Association of Asia and Pacific Physics Societies, Nov. 2010, Japan

[4] <u>植田 憲一</u>「ファイバーレーザーとセラ ミックレーザーの現状と展望」、強光子場科 学研究懇談会、Apr. 2010. 東京大学

[5] M. Tokurakawa, <u>A. Shirakawa</u>, and <u>K. Ueda</u>, "Estimation of Gain Bandwidth Limitation of Short Pulse Duration Based on Competition of Gain Saturation," in ASSP 2010, paper AMB16. February 3, 2010, San Diego, USA

[6] 戸倉川 正樹, <u>白川 晃</u>, <u>植田 憲一</u>、「LD 直接励起フェムト秒 Yb 添加セラミックレー ザー」、超高速光エレクトロニクス研究会 2009 年 11 月 10 日筑波 招待講演

[7] <u>A. Shirakawa</u>, H. Kurokawa, M. Tokurakawa, <u>K. Ueda</u>, N. Tanaka, Y. Kintaka, S. Kuretake, K. Kageyama, "Broadband-gain Nd³⁺-doped Ba(Zr,Mg,Ta)O₃ ceramic lasers," 5th Laser Ceramic Symposium 2009 (invited) Dec. 10, 2009 Bilbao, Spain

[8] <u>K. Ueda</u>, "Physics on High Intensity Lasers," Asian Summer School on Laser Plasma Acceleration and Application (invited) Aug. 17, 2009, Hsinchu, Taiwan

[9] M. Tokurakawa, <u>A. Shirakawa, K. Ueda</u>, R. Peters, S. Fredrich-Thornton, K. Petermann, G. Huber, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Femtosecond Diode-Pumped Yb-Doped Crystal and Ceramic Lasers with High Average Power," Inter national laser physics workshop, 2009 Spain Barcelona, invited talk

[10] M. Tokurakawa, <u>A. Shirakawa, K. Ueda</u>, H. Yagi, T. Yanagitani, and A. A. Kaminiskii, "Continuous-Wave and Mode-Locked Laser Operations Based on Yb³⁺:(YGd₂)Sc₂(GaAl₂)O₁₂ Disordered Ceramic," in CLEO2009, paper CFO3. May 31, 2009, Baltimore, USA

[11] M. Tokurakawa, <u>A. Shirakawa, K. Ueda</u>, R. Peters, S. Fredrich-Thornton, K. Petermann, G. Huber, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Ultra-Short Pulses from Diode-Pumped Yb³⁺-Doped Crystal and Ceramic Lasers with High Average Power," ASSP 2009, paper MC3 February 1, 2009, Colorado, U.S.A.

[12] <u>K. Ueda</u>, "New era of high power solid state lasers, Ceramic Laser, Fiber Laser and Fiber Link of Frequency Standard in ILS/UEC," ODG Spring Seminar (invited) Apr. 3, 2009, Chofu, Japan

[13] <u>植田 憲一</u>、「加速器・産業応用のための 高平均出力高効率レーザー開発の進展」、 KEK レーザー科学推進室報告会、2009 年 2 月4日、KEK 大ホール

[14] <u>植田 憲一</u>、「高出力ファイバーレー ザー、セラミックレーザーの研究」、光科学 拠点東西合同シンポジウム、2009 年 1 月 23 日東京大学

[15] <u>K. Ueda</u> "Background of Ceramic Laser Research Works for Industrial and Scientific Applications (invited)," 4th LCS 2008, Nov.11, 2008 Shanghai, China

[16] <u>K. Ueda</u> "Ceramic laser development in ILS/UEC (invited)," ASILS, Nov. 3, 2008 Gwangju, Korea

[17] <u>K. Ueda</u> "Recent progress of ceramic lasers for ultrashort pulse generation (invited)," ICUIL, Oct. 31, 2008 Tongli, China

[18] J.-F. Bisson, <u>A. Shirakawa, K. Ueda</u>, Yu. Senatsky, "Circular modes selection in Yb:YAG laser using an intracavity lens with spherical aberration," Laser Optics 2008, June 24, 2008, St. Petersburg, Russia

[19] J. Dong, <u>K. Ueda</u>, H. Yagi, "Concentration-Dependent Laser Performance of Yb:YAG Ceramics," CLEO 2008, May 8, 2008, San Jose, CA, US

[20] M. Tokurakawa, A. Shirakawa, K. -i. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, "Diode-pumped sub 60-fs Kerr-Lens mode-locked Yb-doped sesquioxide combined ceramic laser," CLEO2008, CFP6, Oral May 4, 2008 San Jose, USA • 他 7 件

〔図書〕(計2件)

[1] <u>植田憲一</u>、現代物理学の世界 高強度レ ーザー物理学、監修 二宮正夫編、講談社サ イエンティフィック、pp. 67-79, 2010 [2] <u>植田憲一</u>、光科学の最前線 2 (「光科 学の最前線」編集委員会編) 2009、pp. 40-41

〔産業財産権〕
 ○出願状況(計0件)
 ○取得状況(計0件)

6. 研究組織

 (1)研究代表者 植田 憲一(UEDA KENICHI) 電気通信大学・レーザー新世代研究センタ ー・教授 研究者番号:10103938

(2)研究分担者

白川 晃 (SHIRAKAWA AKIRA)
 電気通信大学・レーザー新世代研究センタ
 一・准教授
 研究者番号:00313429