科学研究費補助金研究成果報告書

平成23年3月28日現在

機関番号:13904
研究種目:基盤研究(B)
研究期間:2008~2010
課題番号:20360126
研究課題名(和文)
トリレンマ克服を可能とする分散型エネルギーシステム用次世代高安全二次電池の創製
研究課題名(英文)
Development of the Next-generation Highly-Safe Secondary Batteries for Dispersed Energy
Systems towards Conquering the Trilemma
研究代表者
櫻井 庸司(SAKURAI YOJI)
豊橋技術科学大学・大学院工学研究科・教授
研究者番号:80452217

研究成果の概要(和文): カーボンを含まないミクロンサイズ(平均>7 μ m)のLiFePO₄の電気化 学特性が、新規な窒素ドーピングにより改善された。窒素ドープLiFePO₄(LiFePO₄-N)は1mAcm⁻², 20 °Cの条件下で、C-free LiFePO₄の約1.5倍の放電容量(90 mAhg⁻¹)を示した。これは、LiFePO₄ 中の0がNで一部置換されたことでフレームワークの共有結合性が強くなり、間接的に結晶格 子中のLi⁺イオン拡散性が向上した結果だと考えられた。

研究成果の概要(英文): The electrochemical performances of micron-sized (av.>7 μ m) carbon-free LiFePO₄ was improved by the novel nitrogen doping. Nitrogen-doped LiFePO₄ (LiFePO₄-N) exhibited discharge capacity of 90 mAhg⁻¹, which is ca. 1.5 times higher than that of C-free LiFePO₄ at 1 mAcm⁻², 20 °C. This improvement was considered as the result of the lattice modification through the partial nitrogen substitution for oxygen, which might leads to the enhanced Li⁺ ion diffusivity.

交付決定額

(金額単位:円)

	直接経費	間接経費	合 計
2008 年度	10,600,000	3, 180, 000	13, 780, 000
2009 年度	3, 500, 000	1, 050, 000	4, 550, 000
2010 年度	700,000	210,000	910,000
年度			
年度			
総計	14, 800, 000	4, 440, 000	19, 240, 000

研究分野:電気化学エネルギーデバイス 科研費の分科・細目:5101 キーワード:二次電池、リチウムイオン電池

1. 研究開始当初の背景

資源エネルギーの枯渇・環境破壊を防ぎつ つ、経済発展を維持していくことが、持続可 能な社会を成立させる上で必要だが、地球規 模でこれらの同時達成は難しく、ジレンマな らぬ"トリレンマ"の状態にある。とりわけ、 地球温暖化問題が全世界的な問題としてク ローズアップされ、京都議定書の第一約束期 間(2008-2012年)に入っている現在、石油 依存度が極めて高い我が国では「新・国家エ ネルギー戦略」が策定され、エネルギーセキ ュリティーの観点からも石油依存社会から の脱却を目指して①エネルギー源の多様化 (クリーンエネルギーの利用促進)、②エネ ルギー利用効率の向上、③省エネルギーの一 層の推進、が重要課題として取り上げられて いる。

この様な状況の下、分散型クリーンエネル ギー電源として、エネルギー変換効率が高く 充電可能な次世代型大容量リチウムイオン 電池がさまざまな分野で期待されているが、 この電源システムには、①10-15年の長寿命 性(サイクル用としては3000-5000回レベル の可逆性)と②保守稼動低減につながる高信 頼性に加えて、③高安全性④低コスト性が必 須要件として要求される。一方で昨今、ノー トパソコン・携帯電話用小型リチウムイオン 電池の発火事故など不具合が相次ぎ、電池メ ーカー・機器メーカーによる空前の大規模リ コールが続いており、安全・安心の観点から 電池の安全性に対する社会的関心・懸念が高 まっている。

上記課題を克服するためには特に、現行リ チウムイオン電池に採用されているレアメ タル Co を主成分とする正極材料(コバルト 酸リチウム:LiCoO。)を、資源量豊富かつ安 全性の高い元素からなる材料に置き換える その候補材料として LiFePO 必要がある。 が検討されているが、その電子伝導度は LiCoO。の約百万分の1であり、リチウムイオ ン伝導度もかなり低いため、通常の電池に用 いられる材料粒径(10µm 程度)に調整した 粉末では反応がうまく進まず、材料の重量・ 体積当たりの比容量 (mAh/g, mAh/cc) やレ ート特性(電流取得特性)は現行正極 LiCoO。 に及ばないという問題がある。そこで電池反 応を円滑に進行させるために、①材料粒子表 面に炭素膜を形成したり、②リチウムイオン の一部を価数の異なる元素で一部置換して 電子伝導度を向上させ、③粒子の大きさを極 度に小さくしてナノサイズ化することでリ チウムイオン伝導パスを短くする、等の方策 が採られている。しかしながらその結果とし て材料粉末の嵩密度が低下し、電極を作製し た場合の電極密度も低下するため、実際に電 池化した場合には LiCoO, 系の 2/3~1/2 程度 までエネルギー密度が落ちてしまう、という 課題があった。

2. 研究の目的

LiFePO,の改良に関する従来の研究は、その 電子伝導度・リチウムイオン伝導度の低さを カーボンコートやナノ粒子化で物理的に行 うという言わば対症療法的なものであった が、本研究においては、上記課題の根本的解 決を狙った電気的・電気化学的な改良である 点に特色がある。すなわち、LiFePO4を構成す る陽イオン(Li⁺, Fe²⁺)および陰イオン ((PO₄)³⁻ ポリアニオン)の他元素置換、特に これまで例のない PO₄ユニットへの窒素原子 の置換導入に挑戦した。ポリアニオンである PO₄ ユニットに酸素よりも電気陰性度の低い 窒素を置換導入できれば、P-N 結合の方が P-0 結合よりも共有結合性が強いことから、ポリ アニオンユニットの共有結合性が高まり、間 接的にリチウムイオンとフレームワークの 相互作用が弱くなってリチウムイオンの移 動度即ちリチウムイオン伝導性が向上する ものと期待される。ポリアニオンの共有結合 性増大により間接的にリチウムイオンの動 き易さを増して、リチウムイオン伝導度ひい てはミクロンオーダーの実用サイズ粒径で の正極活物質特性向上を図ることを目的と した。

3. 研究の方法

本研究では、LiFePO₄の他元素置換(特に、 酸素の一部を窒素で置換する窒素ドーピン グ)によるバルク改質、ならびに導電性炭素 膜被覆による表面改質を行い、X線回折によ る結晶構造解析、電子顕微鏡によるモルフォ ロジー評価、粒度分布測定、元素分析、ラマ ン分光による微細構造解析、など種々の材料 物性評価を行った。またこれらの材料粉末を 用いて電池用電極を作製し、放電特性・充放 電サイクル特性などの電気化学特性を評価 した。リートベルト法を用いた結晶構造解析 を踏まえてこれらを総合的に評価すること により、高密度電極形成に直結する大粒径粉 末の使用を可能とする条件を明らかにして、 LiFePO,正極の大型リチウムイオン電池適用 に向けた電極最適化を図ることとした。

以下に、主な検討項目を示す。 (1) ミクロンサイズかつカーボンを含まない ピュア LiFePO₄ (C-free LiFePO₄)の合成 (2) C-free LiFePO₄の窒化(窒素の置換導入) による窒素ドープ LiFePO₄ (LiFePO₄-N)の合 成

(3) C-free LiFePO₄およびLiFePO₄-Nの物理 化学特性評価

(4) C-free LiFePO₄およびLiFePO₄-Nの電気 化学特性評価

(5) リートベルト法を用いた結晶構造解析 による窒素ドープ効果発現要因の推定

4. 研究成果

 ピュアLiFePO₄ (C-free LiFePO₄) および 窒素ドープLiFePO₄ (LiFePO₄-N)の合成

本研究においては、比較的大粒径なミクロ ンサイズの LiFePO₄ を合成し、さらにそれを 窒化して特性・構造を評価することを目的と している。そのためには多くの研究で行われ ていることとは逆に、まず LiFePO4の合成時 に粒子をミクロンサイズに成長させる必要 がある。これには、焼成時の粒成長を阻害す るカーボンの存在は望ましくない。そして窒 化(窒素ドープ)の効果を厳密に評価するた めにも、導電性を与えるカーボンを含まない 原料を用いて LiFePO を合成する必要がある。 そこで、合成過程で炭素が形成される可能性 のある炭素を含む従来の原材料(例えばシュ ウ酸鉄 [Fe(COO), · 2H₂O] や酢酸鉄 [Fe(OOCH_a)_a]) は使用せず、リン酸リチウム (Li₃PO₄) およびリン酸第1鉄 (Fe₃(PO₄)₂・

8H₂0) を原料として用いて炭素フリーな LiFePO₄ (C-free LiFePO₄) を真空炉中で焼成 合成した (300°C、1h の脱水加熱後、750°C、 24h で本焼成)。

C-free LiFeP0₄に対して窒素を導入する手 法として本研究では、高温下でのNH₃ガスフ ローによる直接窒化法を採用した。NH₃ガスは 高温に加熱することで、水素と活性な窒素に 分解する。この時生成された活性な窒素が C-free LiFeP0₄に導入されることで、窒化さ れた C-free LiFeP0₄(以下、(C-free) LiFeP0₄-N)を得ることができる。本研究では 横型石英管状炉中で、NH₃ガス流量を 100[mL/min]、加熱処理時間を24[h]とし、加 熱処理温度 T_{set}[°C]をパラメータとして T_{set}=500,550,600,625,650[°C]の5種の試 料を合成した。

合成した C-free LiFeP0₄の粉末X線回折パ ターンを、LiFeP0₄-Nの回折パターンと併せ て図1に示す。図1より、C-free LiFeP0₄が 空間群 *Pnma* に帰属される単相として合成で きたことを確認した。また、625、650°Cで窒 化を行ったものには異相として Fe₂P が存在 しており、混相であることが確認された。そ れに対して 500、550、600°C で窒化を行っ たものには異相が存在せず、単相であること が確認された。この結果から、LiFeP0₄-Nの 窒化温度としては 500~600°C が適している ことが分かった。

図1 C-free LiFePO₄及びLiFePO₄-Nの粉末X 線回折パターン

単相であることを確認し、FT モードで回折 パターンを測定した C-free LiFePO₄ 及び LiFePO₄-N (500, 550, 600°C) に対して、粉 末 X線回折パターン総合解析ソフト (JADE 7, リガク)を用いて格子定数計算を行った。格 子定数精密化の結果、標準偏差がÅ単位で小 数点以下第4桁に収まり、比較的高精度な値 が得られた。しかし、C-free LiFePO₄ と LiFePO₄-N を比較すると、どれも値の差異が ±3σ 以内に入ってしまうため、標準偏差を 考慮した場合有意な差は認められなかった。 より詳細な結晶構造解析は、後述する(4)の リートベルト解析により行った。

(2) C-free LiFePO₄および LiFePO₄-N の物理 化学特性評価

①レーザ回折粒度分布測定

合成した C-free LiFePO₄及び LiFePO₄-Nの 粒子が目的とするミクロンサイズになって いるかどうか確認するため、レーザー回折式 粒度分布測定装置によって粒度分布を測定 した。図2に C-free LiFePO₄及び LiFePO₄-N (500,550,600°C)の粒度分布を示す。図 2の粒度分布測定結果から、合成した C-free LiFePO₄及び LiFePO₄-N はどちらの粒子もメデ ィアン径 7 μ mを上回っていることが分かり、 目標とするミクロンサイズの粒子が得られ ていることを確認した。

図 2 C-free LiFePO₄及び LiFePO₄-N (500, 550, 600°C)の粒度分布

② ラマン分光解析

合成した C-free LiFePO が実際にカーボン フリーであるのかどうかを確認するため、レ ーザー顕微ラマン分光器によるラマン分光 解析を行った。ここでは、Li₂CO₃ / FeC₂O₄・2H₂O / NH,H,PO,から合成した、粒子表面に導電性 カーボンが残存している別のLiFePO₄(以下、 normal-LiFePO₄)を比較対象として、カーボ ンに起因する D/G バンドスペクトルの有無に よってカーボンが存在するか否かを確認し た。その結果 normal-LiFePO4 では、LiFePO4 粒子表面に残留したカーボンに由来するGバ ンド (1592[cm⁻¹]) 及び D バンド (1356[cm⁻¹]) の2つのブロードなバンドも観測された。 方、C-free LiFePO₄にはこの G/D バンドが観 測できなかったことから、C-free LiFePO₄に は導電性カーボンが存在しないことが確認 できた。

③EDX 元素マッピングおよび XPS スペクトル 測定

窒化によって実際に LiFePO₄-N に窒素が導入されているかどうかを確認するため、エネ

ルギー分散型 X 線分光 (EDX) による元素マ ッピングならびに X 線光電子分光 (XPS) に よる結合エネルギースペクトルの測定を行 った。その結果、EDX 元素マッピングには、 500、550、600°C で窒化した全ての LiFePO₄-N において、窒素が粒子のシルエットで分布し ていることが分かり、LiFePO₄-N 粒子に窒素 が存在していることが示唆された。更に EDX 元素マッピングの結果を裏付けるため、X線 光電子分光(XPS)による結合エネルギース ペクトルの測定を行った。その結果、C-free LiFePO₄の XPS スペクトルには窒素に起因す る結合エネルギーは観測されなかったが、3 つの LiFePO₄-Nの XPS スペクトルからは窒素 に起因する N 1s 結合エネルギーが観測され た。よって XPS スペクトルからも、LiFePO₄-N 粒子に窒素が確かに存在していることが確 認できた。

④化学分析

酸分解-ICP-AES 法、酸化還元滴定、不活性 ガス融解-熱伝導度法により各々、Li, Fe, P の定量、Fe の価数分析、N の定量を行った。 その結果、Li, Fe, P の各元素が誤差範囲内 で化学量論比だけ存在し、またLiFePO₄-N(550, 600°C) において N が Fe に対してモル比で 0.9 %、バルクとして存在していることを確 認した。なお、C-free LiFePO₄の N 量は検出 限界以下であるという結果であった。Fe の価 数分析からは、LiFePO₄[-N]には Fe²⁺しか存在 していないことが確認された。

ここで、3価のアニオンであるNが2価の アニオンである0と置換されたとすると、 LiFePO₄においてチャージバランスを取るた めには、Feが2価/3価の混合原子価状態と なるか、もしくは0が一部欠損することが可 能性として考えられる。しかし化学分析の結 果によれば、Feは2価のものしか存在してお らず、Feが混合原子価状態となっている可能 性は消える。よってこの化学分析の結果は、 Nがドープされた場合、チャージバランスを 取るために0が一部欠損することを示唆して いると言える。これらの化学分析結果により、 LiFePO₄-N (550, 600°C)の正確な化学組成式 を LiFePO_{3.9865}N_{0.009}と導出することができた。

(3) C-free LiFePO₄および LiFePO₄-N の電気 化学特性評価

①正極ペレットおよびコインセルの作製

合成した C-free LiFeP04 及び LiFeP04-N (500, 550, 600°C) は、コインセル (CR2032)
を構成して電気化学特性を評価するために、
まず正極ペレットに形成した。正極ペレットには、導電助剤としてアセチレンブラック (以下 AB)、バインダーとして PTFE を使用した。正極活物質である C-free LiFeP04 及び LiFeP04-N との分量比は、LiFeP04[-N]: AB:
PTFE = 70: 25: 5 (in wt.)の重量比と

し、攪拌擂潰機で混合して得た混合物をロー ルプレス機で圧延してシート化し、Φ8のポ ンチでペレットに打ち抜いた後、80°C、12時 間の真空乾燥を行った。

形成した正極ペレットを用いて、Ar 雰囲気 グローブボックス内でコインセル (CR2032) を作製した。負極には金属 Li フォイル、電 解液には 1 mol/L LiPF₆-EC: DMC (1:1 v/v%)、 セパレータには微多孔性ポリプロピレン膜 をそれぞれ使用した。

②定電流放電特性

充放電電流密度 1[mA/cm²]、充電終止電圧 4.2[V]、放電終止電圧 3.0[V]として、定電流 充放電を行い、正極活物質特性を評価した。 図3に C-free LiFePO₄及びLiFePO₄-Nの2サ イクル目における定電流充放電特性を示す。

図3 C-free LiFePO₄及び LiFePO₄-N (500, 550, 600°C)の定電流充放電特性 (2nd cycle)

図 3 から分かるように、C-free LiFeP0₄が 61[mAhg⁻¹]の放電容量を示しているのに対し、 窒化処理を行った LiFeP0₄-N(600°C)は 90[mAhg⁻¹]と約 1.5 倍の大きな放電容量を示 した。ほかの LiFeP0₄-N(500°C)、LiFeP0₄-N (550°C)についても、それぞれ C-free LiFeP0₄よりも大きな放電容量が得られてい る。この LiFeP0₄-Nにおける放電容量の増加 は、LiFeP0₄中の酸素が窒素で一部置換された ことで結晶構造にわずかな変化が生じ、バル ク中の Li⁺イオン拡散性が向上した結果だと 考えられる。

③放電特性の電流依存性測定

1.0[mA/cm²]で2回定電流充放電試験を行った後、1.0[mA/cm²]で定電流充電し、そこから20/10/5/4/3/2/1[mA/cm²]の順に電流密度を変化させて定電流放電を行い、レート特性の評価を行った。なお、それぞれの電流密度での放電が終了した後には充電は行わず、10分間の休止時間を挟んでそのまま次の電流密度で放電を行った。最終的には各電流密度での放電容量を順に積算し、グラフ化した。このような手法でレート放電を行うことで、サイクル劣化の影響を無視して、放電容量の電流密度依存性を知ることができる。このレート特性は、大きな電流密度

でどれだけの放電容量が得られるのか、つま り正極活物質の出力をどれだけ取り出すこ とができるのかを測る尺度となる。充電終止 電圧は 4.2[V]、放電終止電圧は 3.0[V]に設 定し、定電流充放電試験と同一とした。図4 に C-free LiFePO₄及び LiFePO₄-N (500, 550, 600°C)のレート特性を示す。

図4 C-free LiFePO₄及び LiFePO₄-N (500, 550, 600°C) のレート特性

図4より、窒化した LiFePO₄-N の方が C-free LiFePO₄よりもレート特性が良くなっ ていることが分かる。20、10 $[mA/cm^2]$ ではそ の差はそれほど大きくないが、5 $[mA/cm^2]$ まで 電流密度を絞るとその差は大きく広がって いる。1 $[mA/cm^2]$ においてはLiFePO₄-N(600°C) が最も良い特性を示していたが、それ以上の 電流密度ではLiFePO₄-N(550°C) が最も良い レート特性を示した。

④定電流サイクル特性

定電流充放電試験と同様に、充放電電流密 度を 1.0[mA/cm²]、充電終止電圧を 4.2[V]、 放電終止電圧 3.0[V]の条件下で、定電流サイ クル試験を行った。図 5 に C-free LiFePO₄ 及び LiFePO₄-N (500, 550, 600°C)のサイク ル特性を、放電容量維持率の充放電回数依存 性として示す。

図5 C-free LiFePO₄及び LiFePO₄-N (500, 550, 600°C) のサイクル特性

このサイクル特性においても、LiFePO₄-N (550°C)が最も良い放電容量維持率を示し ている。一方で、LiFePO₄-N(600°C)はサイ クルにつれて容量減少が増える特性となっ た。現段階ではこの理由は必ずしも明らかで ないが、LiFeP0₄-N(600° C)よりも若干窒化 処理温度が高いLiFeP0₄-N(625° C)において 見られた Fe₂P などの不純物相が粒子最表層 にわずかに存在し、サイクル劣化の原因にな っていることも考えられる。

(4) リートベルト法を用いた結晶構造解析 による窒素ドープ効果発現要因の推定

上記(3)に示した LiFeP04 の正極活物質特 性における窒素ドープ効果の発現要因を明 らかにするために、(2)の検討で得られた化 学組成を元にしたX線リートベルト解析に よる詳細な結晶構造解析を行った。

化学分析の結果、放電特性の顕著な向上が 見られた LiFePO₄-N(窒化処理温度:(550, 600°C)においては、Li、Fe、Pが化学量論比 で存在し、Fe は 2 価であり、N が Fe に対し てモル比でおよそ 1 %、バルクとして存在し ていることを確認した。これらの結果から、 N がドープされるとチャージバランスを取る ために 0 が一部欠損し、LiFePO₄-N((550, 600°C)の化学組成は LiFePO_{3.9865}N_{0.009}と表す ことができると考えられた。この化学組成を 元にして、X線リートベルト解析を行った結 果を以下に示す。

図 6 (a) に C-free LiFePO₄、図 6 (b) に窒素 ドープ品の例として LiFePO₄-N (550 °C) の リートベルト解析結果をそれぞれ示す。

図 6 C-free LiFePO₄ および LiFePO₄-N (550°C)のリートベルト解析結果

両者ともに R_{wp} が 10.00%以下となり、 R_{B} と R_{F} についても 5%を下回っており、結晶構造モ デルは妥当であると言える。リートベルト解 析の結果、窒素ドープにより格子定数はさほ ど変わらぬ一方、LiFePO₄-NにおいてNはO₁、 0_3 サイトにドープされ (席占有率 g は各々約 0.3%)、また 0 の欠損は 0_1 サイトにおいて生 じていることが示唆された。また、原子間距 離から導出した FeO₆および PO₄多面体の体積 は、窒素ドープにより若干収縮し、Li⁺イオン 拡散パスに関連する $0_1 - 0_2$ 及び $0_3 - 0_3$ 原子 間距離が拡大していることが分かった。Li⁺ イオンの拡散パスと $0_1 - 0_2$ 及び $0_3 - 0_3$ 原子 間距離の模式図を図 7 に示す。これらの解析 結果から、N がフレームワークに導入された ことで、 0_1 サイトにおける酸素欠損の存在も 相俟って、狙い通り Li⁺イオン拡散パスが拡 がり、Li⁺イオン拡散性が向上したことによっ て放電容量が増大した可能性が高いことが 示唆された。

図7 Li⁺イオンの拡散パスと0₁-0₂及び0₃-0₃原子間距離の模式図

(5)まとめと今後の展望

本研究において、カーボンフリーかつ実用 的なミクロンサイズ (メディアン径 7μm 以 上)の LiFePO₄ に対して、これまで国内外で 報告例がない窒素ドーピングを行い、Li⁺イオ ン拡散性向上を図り、その電気化学特性を向 上させることができた。しかしながら、依然 として低い電子伝導度ゆえにカーボンフリ ー状態では特性向上が限られたものとなっ た。紙面の都合で割愛したが、カーボンコー トとダウンサイズ化による特性向上も実験 的に確認しており今後は、粒子形態・粒径の 最適化による更なる特性向上、ならびに学術 面では、合成方法の工夫により形態制御され た単一粒子を用いた真の Li⁺イオン拡散定数 の決定など、LiFePO。を高エネルギー密度かつ 大電流取得可能な大型電池用正極材料に仕 上げていく上で必要な課題も残されている。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計4件)
 ①月岡勇気、田中春輝、福田裕一、千坂光陽、辻川知伸、<u>櫻井庸司</u>、窒化処理によるリチウムイオン電池用 LiFeP04 正極材料の特性

向上、第51回電池討論会、2010年11月9日、愛知県産業労働センター(愛知県)

②Yuki Tsukioka, Yuichi Fukuda, Haruki Tanaka, Mitsuharu Chisaka, and <u>Yoji</u> <u>Sakurai</u>, Improvement of cathode properties of C-free LiFePO₄ by nitrogen doping, The 15th International Meeting on Lithium Batteries (IMLB 2010), 2010 年 7 月 6 日, Montreal, Canada ③福田裕一、月岡勇気、田中春輝、千坂光陽、 <u>櫻井庸司</u>、窒素ドープによる LiFePO₄ 正極特 性の向上、電気化学会第 77 回大会、2010 年

3月30日、富山大学(富山県)

④福田裕一、月岡勇気、千坂光陽、<u>櫻井庸司</u>, リチウムイオン電池用 LiFePO₄ 正極の電極作 製条件の検討、第 40 回中部化学関係学協会 支部連合秋季大会、2009 年 11 月 8 日、岐阜 大学(岐阜県)

```
〔図書〕(計3件)
```

 ①<u>櫻井庸司</u>、オーム社、電池ハンドブック、2010、pp.507-513
 ②<u>櫻井庸司</u>、エヌ・ティー・エス、高性能蓄 電池-設計基礎研究から開発・評価まで-、2009、pp.63-74
 ③<u>櫻井庸司</u>、シーエムシー出版、リチウムイ オン電池 この 15 年と未来技術、2008、 pp.15-38

〔その他〕 ホームページ等 http://www.cec.ee.tut.ac.jp/

6. 研究組織

 (1)研究代表者 櫻井 庸司(SAKURAI YOJI) 豊橋技術科学大学・大学院工学研究科・教 授 研究者番号:80452217

(2)研究分担者 なし

(3)連携研究者 なし