科学研究費補助金研究成果報告書

平成 23 年 3 月 15 日現在

機関番号:12608
研究種目:基盤研究(B)
研究期間:2008~2010年度
課題番号:20360294
研究課題名(和文) エピタキシャル二酸化チタンヘテロ電極の光電気化学
研究課題名(英文) Photoelectrochemistry of hetero-structured epitaxial TiO₂ electrodes
研究代表者
松本 祐司(MATSUMOTO YUJI)
東京工業大学・応用セラミックス研究所・准教授
研究者番号:60302981
研究成果の概要(和文):
本研究では、TiO₂ とその関連材料の単結晶・エピタキシャル薄膜を用いた光電気化学研究を通じて、以下の成果を得た。

- (1) TiO2の誘電率が電界に依存することを初めて明らかにした。
- (2) パルスレーザ堆積装置と電気化学システムが複合化した新装置を開発し、電気化学的 手法による TiO₂薄膜中の酸素欠損分布のその場定量評価に成功した。
- (3) TiO2中のVが還元サイトとして、銀の光析出反応を促進することを明らかにした。
- (4) Nb を高濃度に添加した SrTiO₃ と TiO₂の光酸化作用を利用して、クラスレート型の銀酸化物の合成に成功した。

研究成果の概要(英文):

In this research PJ, we have got the following achievements through studies on photoelectrochemistry of TiO_2 and its related titanates single crystals and epitaxial films.

(1) Electric field dependent permittivity of TiO_2 was first found via electrochemical approach.

(2) A new PLD-EC system was developed for in situ electrochemical analysis of oxygen vacancy dynamics in TiO₂ films.

(3) The role of V dopant in photodeposition of Ag on V:TiO₂ films was revealed.

(5) A new synthesis root by photocatalysis was discovered for silver-oxide clathrate.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	9, 000, 000	2, 700, 000	11, 700, 000
2009 年度	4, 100, 000	1, 230, 000	5, 330, 000
2010 年度	1, 500, 000	450, 000	1, 950, 000
年度			
年度			
総計	14, 600, 000	4, 380, 000	18, 980, 000

研究分野:工学

科研費の分科・細目:材料工学・無機材料・物性 キーワード:表面・界面物性、光電気化学

1. 研究開始当初の背景

(1) 1969 年の Honda&Fujishima[1]らによる、n型の二酸化チタンルチル単結晶を用いた水の光分解の発見は、酸化物半導体単結晶

電極を用いた電気化学研究の先駆けと言える。それ以来、TiO2は光触媒や太陽電池材料として注目され応用開発が進んできた。光触媒や太陽電池は、光で励起された電子と正孔を利用したエネルギー変換システムである

図2:Nb:TiO₂(110)上のTiO₂、V:TiO₂薄膜の光触媒膜 厚依存性

点で、応用上、解決されるべき共通の課題が ある。1つは、光の有効利用の観点から、で きるだけ幅広い太陽光の可視域の光応答性 を持たせること。Cr ドープの可視光応答型の 光触媒や Ru 有機色素を用いた色素増感型太 陽電池の開発はその一例である。もう1つは、 電子-正孔のヘテロ界面での輸送過程の高効 率化である。光触媒では、高効率の酸化・還 元サイトの形成に助触媒が必要不可欠であ る。また、色素増感太陽電池では、有機-二 酸化チタン、および有機-電解溶液ヘテロ界 面での電荷移動が発電効率を支配する要因 の1つとなっている。有機太陽電池では、pn 層の間にLiFを数原子層挿入すると効率が向 上する、との報告もある。最近では可視光応 答型光触媒の開発でも、Z スキームと呼ばれ る異種材料間の2光子過程を利用するものが 注目され、異種材料の界面での電荷移動の制 御がますます重要になってきている。

(2) 申請者は、光触媒における異種材料間の 電荷移動現象を半導体エレクトロニクスの 観点から研究を進めてきた。今日の半導体レ ーザーや電子デバイス開発の成功のカギは、 高品質な化合物半導体薄膜の成長とナノレ ベルでのヘテロ接合技術に存している。申請 者は、図1に示すように、二酸化チタン単結 晶表面の平坦化、およびパルスレーザ堆積法 による原子レベルで制御した単結晶薄膜化 技術を世界に先駆けて TiO2 の研究に取り入 れた[2,3]。それにより、世界初の二酸化チタ ン電界効果トランジスタ[4]や Co 添加二酸化 チタン室温透明磁石の開発[5]など半導体電 子材料としての二酸化チタンの新機能開発 に成功してきた。

(3) さらに、最近、申請者はこのような二

酸化チタン薄膜技術を光触媒研究にも展開 し、興味深い結果が得られ始めている[6]。 図2は、Nb 添加二酸化チタン単結晶基板 上に作製した膜厚が傾斜した TiO2、V:TiO2 薄膜の硝酸銀からの光析出反応の結果であ る。TiO2 膜では、膜厚が〜5nm 付近にの み、銀が析出し、一方、V を添加すると、 広い膜厚範囲にわたって銀が析出すること を見つけた。また、V の添加効果は、Nb を添加してない二酸化チタン単結晶基板上 では、逆に不活性になること、また添加す る V の濃度にはしきい値(〜3%)がある ことも分かってきている。薄膜、及びその 表面が同じでも基板が異なると全く異なる 光活性を示すのは、こうした現象では、薄 膜・基板界面が重要な役割を担っているた めと考えられる。

(4) 一連のこうした現象の解明には、電気 化学的手法と組み合わせ、より良く定義さ れた基板-薄膜ヘテロ界面での電荷移動や 光吸収プロセスの理解が不可欠である。実 際、申請者らが開発した表面超平坦化二酸 化チタン単結晶電極を用いた場合でさえ、 結晶面によってフラットバンドポテンシャ ル[7]や銀の光析出反応[2]などの電気化学 的性質が異なることが明らかにされ、酸化 物単結晶電極の電気化学においても、電極 構造をナノレベルできちんと制御すること が重要であることが再認識されつつある。

研究の目的

そこで、本研究課題では、このような異常 な膜厚・基板・添加物効果を基板-薄膜ヘテ ロ界面での電荷移動や光吸収プロセスの観 点から解明することを目的とする。

参考文献:

[1] A. Fujishima et al S. Kogyo Kagaku Zasshi, 72, 108. (1969)

[2] Y. Yamamoto, Y. Matsumoto and H. Koinuma et al,

Jpn. J. Appl. Physics EXL 40 L511-514 (2005)

[3] Y. Yamamoto, Y. Matsumoto and H. Koinuma et al, Appl. Surf. Sci. 238 189 (2004)

[4] M. Katayama, H. Koinuma and Y. Matsumoto et al, Appl. Phys. Lett. 89 242103 (2006)

[5] Y. Matsumoto, M. Murakami, T. Hasegawa, M. Kawasaki, and H. Koinuma et al, Science 291 854-856 (2001)

[6] T. Abe, H. Koinuma and Y. Matsumoto et al, Appl. Phys. Lett. 91 61928 (2007)

[7] R. Nakamura et al, J. Phys. Chem. (Lett.) 109 1648-1651 (2005)

研究の方法

そのために、以下の研究方法により、エピ タキシャル二酸化チタンヘテロ界面の光電 気化学研究を推進する。

(1) よりよく定義された酸化物半導体電極を 用いた究極の電気化学研究を行うための UHV-電気化学セル(EC)と直結した PLD システムの開発

 (2) 種々のヘテロ界面を有する TiO₂/V:TiO₂ エピタキシャル電極の設計と電気化学特性 評価

4. 研究成果

(1) 二酸化チタン単結晶電極を用いた誘電 率電界依存性の電気化学評価

SrTiO₃では、その誘電率が電界によって、 非線形に減少することが知られている。通常、 この効果は、金などのショットキー接合を形 成する金属電極を蒸着した際のキャパシタ ンス-電圧 (C-V) 特性を Yamamoto らが提案 した誘電率の電界依存性を考慮した Mott-Schottky 解析式

$$\frac{1}{C^{2}} = \frac{2}{e\varepsilon_{r,E=0}\varepsilon_{0}N_{D}} \left(U - U_{jb}\right) + \frac{1}{b^{2}\varepsilon_{0}^{2}} \left(U - U_{jb}\right)^{2}$$

によって評価される。式の詳細は省略するが、 b を含む第2項が電界の効果である。これに 対し、本研究では、電気化学的手法を用いる ことで、金属を蒸着することによる界面の再 現性やリーク特性の問題を回避し、同様の測 定を行うことができるのが特徴である。この 方法により、Nb:SrTiO₃の誘電率電界依存性を 評価したところ、既往の報告とよく一致した ことから、このような誘電率の電界依存性の 評価に、電気化学的手法の有効性が示された。 この結果をもとに、結晶面の異なる図1のよ うな原子レベルで平坦化された Nb:TiO。単結 晶を用いて同様の実験を行った。その誘電率 の電界依存性の結果を図3に示す。c 軸に沿 った誘電率が ab 面内のそれよりも大きい電 界依存性を示すことを初めて見出した。ちな みに、このような電界依存性は、平坦化処理 されていない単結晶ではきちんと評価でき ないことが分かっている。以上の結果は、原 子レベルで平坦化された電極を用いること の重要性を再確認させられるとともに、誘電 率が電界にあまり依存しない結晶面、例えば

図3:Nb:TiO2単結晶の誘電率電界依存性

(110)や(100)面では、従来の Mott-Schottky プロットによるフラットバンドやドナー密 度の見積もりが可能であるが、(001)面のよ うな誘電率が大きく電界に依存する場合に は、その効果を取り入れた今回の解析手法を 用いる必要があることを示唆している。この ようにして求めたフラットバンド電位やド ナー密度から、空間電荷層の電位勾配を正確 に見積もることが可能となり、本研究成果は、 光触媒活性の結晶面依存性などの特性を理 解する重要な知見を与えるものである。

(2) in situ 電気化学-PLD 装置の開発

よりよく定義された酸化物半導体電極を 用いた究極の電気化学実験を行うために、図 4のような薄膜を作製するパルスレーザ堆 積装置に大気暴露せず電気化学インイーダ ンス測定が可能な電気化学セルを組み込ん だ新しいシステムの設計・試作を行った。

これまでにも、電気化学システムとUHV シ ステムとが複合化した装置は開発されてき たが、薄膜堆積装置と複合化した例はなく、 また電気化学インピーダンス測定ができた という報告例も申請者の知る限りない。本装 置では、酸化物中の酸素欠損の定量を電気化 学インピーダンス法により、非破壊で測定可 能であり、かつ薄膜堆積やPLD室内での加熱 や酸素処理に伴う酸素欠損の挙動を直接比 較できる画期的な装置である。その例として、 以下に、二酸化チタン単結晶基板上のホエピ

図4:PLDと電気化学測定システムが in situ で複合 化された装置の模式図と写真

図5:Nb:TiO₂(110)単結晶電極の、(a)表面清浄化後の RHEED パターンと(b)電気化学測定後の RHEED パター ン。(c)表面清浄化後 Nb:TiO₂(110)単結晶電極の Mott-Schottky プロット。

成長の結果について報告する。 まず、0.5wt%Nb:TiO₂(110) 基板の in situ で の電気化学測定結果を図5に示す。図5(a) はPLD室で、酸素加熱処理に依る表面清浄化 処理を行った後の RHEED パターンである。シ ャープなスポットパターンは表面が清浄、か つ原子レベルで平坦であることを示してい る。この基板電極を大気暴露せず、電気化学 測定による Mott-Schottky プロットを行った 結果が、図5(c)である。研究成果(1)で述べ たように、(110)面では、従来どおりの Mott-Schottky プロットの直線の傾き、およ び電位軸との交点から、ドナー密度、および フラットバンド電位を見積もることができ る。それらの値は、それぞれ、1.5±0.2x10²⁰ cm⁻³、-0.48V vs. Ag であった。このドナー密 度の値は、0.5wt%のNb添加量1.4x10²⁰ cm⁻³ にほぼ等しく、測定がきちんと行われている ことがわかる。図5(b)は、電気化学測定後、 再度、PLD 室に試料を搬送し、酸素加熱直後 の RHEED パターンである。電気化学測定後も、 表面は清浄、かつ原子レベルでの平坦性が保 持されていることを示す。

図6:Nb:TiO₂(110)単結晶電極上に、酸素圧 1x10⁻³Torr、 400℃で TiO₂(21nm)をホモエピ成長させた場合の真空アニ ール処理前後の Mott-Schottky プロット(a)、およびそこ から見積もられる膜厚方向に沿った酸素欠損量分布(b)

次に、この上に、RHEED 強度振動を観察し ながら、酸素圧 1x10⁻³Torr、400℃で TiO₂(21nm)をホモエピ成長させた場合の真空 アニール処理前後の Mott-Schottky プロット、 およびそこから見積もられる膜厚方向に沿 った酸素欠損量の分布を図6に示す。挿入し た RHEED パターンから、真空アニール前後で の薄膜表面は、清浄、かつ平坦であることを 確認した。薄膜堆積後の Mott-Schottky プロ ット(赤)は、もはや直線ではない。これは、 膜厚方向に酸素欠損の量が異なるためであ る。これを膜厚方向に対する分布として表し たのが(b)である。表面から〜10nm の深さま で、約1桁近くの酸素欠損量の傾斜が存在す る。これは、薄膜堆積中は、定常状態で酸化 が進行しているが、堆積後、酸素中で冷却す る過程で、薄膜表面から再酸化が起こるため、 表面からの拡散に支配された酸素欠損量の

傾斜が生じるものと理解できる。次に、この 薄膜を PLD 室で 400℃、1 時間の真空アニー ル処理を行い、再度電気化学測定を行った。 Mott-Schottky プロット((a) 青)の傾きは小 さくなり、酸素欠損量が増大したことがわか る。膜厚方向に対する分布では、約1桁酸素 欠損量が増大しているが、依然として不均一 な傾斜が見てとれる。以上から、今回の薄膜 堆積条件下では、薄膜表面から〜10nmの深さ 方向に酸素欠損の不均一性が生じること、ま た真空アニールによって、やはり 10nm 程度 の深さまで、酸素欠損が導入されることが実 験的に初めて明らかとなった。今後、nm スケ ールの酸化物薄膜・デバイスを作製するにあ たって、酸素欠損量のこのような不均一性の 制御は、ますます重要になっていくものと考 えられる。

(3) V:TiO₂/Nb:TiO₂ (110) ヘテロ電極の作製とその光電気化学反応に及ぼす V 効果

一般に、高濃度に Nb を添加した TiO₂は、 表面での急峻なバンドベンディングのため に、光硝酸銀反応での光銀析出は表面で起こ らない。これに対し、その上にVを添加した V:TiO,薄膜を堆積すると、表面での光銀析出 反応が促進されることをこれまでに見出し てきた。そこで、この表面での光銀析出反応 の促進効果の起源を探るために、表面のV濃 度を系統的に変化させた V:TiO₂/Nb:TiO₂ (110) ヘテロ電極を作製し、3 電極式の電気 化学セルを用いて、光電流応答について調べ た。図7にNb:TiO₂(110)単結晶上に堆積した TiO₂、V:TiO₂ 薄膜のサイクリックボルタモグ ラムを示す。V を添加すると、アノード側に V の酸化・還元波が観測される。ここで重要 なことは、本実験条件下では、後述の銀還元 反応の平衡電位 ~ +0.7 V vs. Ag/AgCl KC1(sat.)で、薄膜中の V3+/V4+のの酸化・環 元反応が容易に起こることである。

図 7:Nb:TiO₂(110)単結晶上に堆積した TiO₂、V:TiO₂ 薄膜のサイクリックボルタモグラム。

次に、図8にオージェ電子分光から求めた 表面 V 濃度と光酸化電流の関係を示す。HC104、 AgN03 両水溶液中で、表面 V 濃度が増大するに

つれて、光酸化電流が線形に減少する。興味 深いのは、AgNO3水溶液中で光反応をさせたと ころ、V濃度が~8at%以上で、観測される光 酸化電流値が負になることである。実際に、 その表面では図の SEM 写真に示すように、Ag が析出していた。このような現象は、V が再 結合中心となって、光励起キャリアが単に減 少した効果だけでは説明できない。V を添加 すると銀の光還元反応が表面で促進される こと、および先述したように銀還元反応の平 衡電位で V3+/V4+の酸化・還元反応サイクル が容易に起こることから、表面のVに由来す るギャップ内準位を介した Ag の還元反応が 表面で進行している、との仮説をたてた。し たがって、観測される光酸化電流は、光酸化 電流とこの光環元電流の正味の差とする見 かけの光酸化電流であると考えられる。以上 の結果は、急峻なバンドベンディングで、本 来は表面で還元反応が進行しない光触媒に おいて、V:TiO2薄膜を少量堆積することは、 いわば、"還元サイト"を形成したことに相 当すると考えられ、還元サイトの形成機構の 1つとして重要な知見を与える。

(4) クラスレート型銀酸化物の光触媒合成

一般に、チタン酸化物系の光触媒では、硝 酸銀水溶液液中では、Ag+が還元され、水が 酸化されて酸素が発生することが良く知ら れている。しかし、我々は、Nb を高濃度に 添加した SrTiO3 単結晶を用いると、図9に 示すようなAg⁺が2価、3価にまで酸化された クラスレート型銀酸化物(Ag₇0₈NO₃)が生成す ることを見出した。この物質は、古くから、 Tc~1Kの超伝導体として知られ、電気化学的 に合成されてきた。酸化チタンを始めとする チタン酸化物系の光触媒作用には、水や有機 物の光分解反応に代表されるような強い酸 化能力がある。しかし、このような強い酸化 作用を物質合成に応用した例はほとんど報 告例がない。以下の酸化還元平衡電位の観点 から、

 $2H_2O \rightarrow O_2(g) + 4H^* + 4e^- + 1.23V \text{ vs. SHE}$ $7Ag^* + NO_3^- + 8H_2O \rightarrow Ag_6O_8AgNO_3 + 10e^- + 16H^* + 1.59V \text{ vs. SHE}$ クラスレート型銀酸化物の生成は、水の酸化 反応と競争的に起こるはずである。

その反応選択性を、3 電極セル中で電極電 位を制御しながら光電気化学合成すると、図 10 に示すように、電極電位をアノード側にふ ることで、一様に光り酸化反応が増大してい るにもかかわらず、電極電位によって銀坂物 の反応選択性が振動することを見出した。

同様の現象は、Nb:TiO₂単結晶上でも確認され、さらに(110)面では、Ag₇O₈NO₃がエピタキ シャル成長することを見出した。

図 9: Nb:SrTiO₃上で光触媒合成されたクラスレ
 ト型銀酸化物の SEM 像と XRD パターン

図 10: 銀酸化物の光酸化選択率、および酸化電流の 電位依存性

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計5件)

①<u>Y. Matsumoto</u>, S. Takata, R. Tanaka and A. Hachiya, "Electrochemical impedance analysis of electric field dependence of the permittivity of SrTiO₃ and TiO₂ single crystals", J. Appl. Phys. 109, 014112-1-3 (2011) 査読有 ϑ

②R. Tanaka, S. Takata, M. Katayama, R. Takahashi, J. K. Grepstad, T. Tybell and <u>Y. Matsumoto.</u> "Photocatalytic Synthesis of Silver-Oxide Clathrate Ag₇O₈NO₃", J. ElectroChem., 157, E181-183 (2010) 査読 有り

③<u>Y. Matsumoto</u>, M. Katayama, T. Abe, T. Ohsawa, I. Ohkubo, H. Kumigashira, M. Oshima and H. Koinuma, "Chemical trend of Fermi-level shift in transition metal-doped TiO₂ films", J. Ceram. Soc. Jpn, 118, 993-996 (2010) 査読有り

〔学会発表〕(計 22 件)

①<u>Y. Matsumoto</u>, R. Tanaka,S. Takata, A. Hachiya, "Semiconductor electrochemistry on well'defined TiO₂ single crystal surfaces", The International Chemical Congress of Pacific Basin Societies, H22.12.15-20, Sheraton Waikiki Honolulu ②S. Takata, A. Hachiya, R. Tanaka, <u>Y. Matsumoto</u>, "Electric Field dependence of the permittivity for atomically flat TiO₂ single crystals investigated by electrochemical approach", The International Chemical Congress of Pacific Basin Societies, H22.12.15-20, Sheraton Waikiki Honolulu

⁽³⁾Ryohei Tanaka, S. Takata, R. Takahashi, J. Grepstad, T. Tybell, <u>Y. Matsumoto</u>, "Photocatalytic synthesis of silver-oxide clathrate Ag₇NO₁₁", The International Chemical Congress of Pacific Basin Societies, H22.12.15-20, Sheraton Waikiki Honolulu

(4) Shinataro Takata, Yuji Matsumoto,
"In-situ electrochemical analyses of TiO₂ single crystals and thin films",
ISIMME2010, H22.9.19-22, Holiday Inn Changzou Wujin, Changzou, China
(5) Y. Matsumoto (invited), "Epilayer Control of Photocatalysis at Well-defined Oxide Surface and Interface", Hokkaido University CRC International Symposium on"Innovation Driven by Catalysis-past, present and future"- dedicated to the 20th anniversary of CRC, H21.12.7-9, Hokkaido Univ. CRC

(6) Ryohei Tanaka, <u>Yuji Matsumoto</u>,
(7) Photocatalytic synthesis of Silver-Oxide Clathrate Ag₆O₈AgNO₃", ISIMME2009, H21.10.26-10.27 Sichuan University.
(7) <u>Y. Matsumoto</u>, "Electrochemical approach to studies on heterointerfaces of transition metal oxides", ISIMME2009, H21.10.26-10.27 Sichuan University.

(8) <u>Y. Matsumoto</u>, R. Tanaka, S. Takata, "Precision Analysis of Mott-Schottky Plot for A Heavily Doped N-Type SrTiO₃(001)", STAC-3, H21.6.16-6.18, Yokohama 6.研究組織
 (1)研究代表者
 松本 祐司 (MATSUMOTO YUJI)
 東京工業大学・応用セラミックス研究所・准 教授
 研究者番号:60302981