The exposure of solutions of 6,13-dithienylpentacenes to sunlight in air afforded their endoperoxides. The solutions and thin films of the endoperoxides were irradiated with UV light to reproduce the 6,13-dithienylpentacenes. These conversions are of interest as an ecological film-formation technology in the study of organic semiconductors.
ジチエンルベンタセン 1a と酸素 2a の変換反応

2. 研究の目的

本研究では、ジチエンルベンタセン類と酸素との光加反応について速度論を用いて解析する。これにより光加反応を制御している構造因子を明らかにし、付加体合成に関する基礎データを収集する。また、酸素付加体の単結晶 X 線構造解析を行い、分子構造を調査する。さらに、UV 光による酸素付加体の分解反応を調べ、ベンタセン誘導体の効率的な発生方法を探索する。特に、溶液プロセスでは、薄膜での変換反応がカギとされる。そこで、これについて詳細に調べる。一方、酸素付加体の分子構造が分解反応に及ぼす要因を考察し、塗布型有機半導体を目指した分子設計指針を得る。

3. 研究の方法

(1) スキーム 2 で見られるように、ベンタセン骨格に由来する紫色が酸素付加により消失する。この反応過程を調査するためにベンタセン誘導体の UV-vis スペクトルを測定し、経時変化から一次反応速度定数 (k) を求めた。また、置換基の種類と k との相関を調査した。

(2) ベンタセン誘導体と酸素との光加反応を 1H NMR スペクトルで追跡し、変換率を調べた。また、スケールアップにおいて太陽光を用いた光加反応を行い、酸素付加体を単離した。

(3) 酸素付加体の分子構造を調査するために単結晶 X 線構造解析を行った。特に、酸素原子とチオフェン環との分子内空間配置に着目し、置換基の種類による効果を調べた。

(4) X 線構造解析で得られた分子座標を用いて B3LYP/6-31G(d) 分子軌道計算を行い、生成熱を求める。同じ組成から生成する酸素付加体の生成熱を比較することで、置換基の種類によるエネルギー評価を試みた。

(5) 酸素付加体の脱酸素反応を調査した。NMR チューブ内に酸素付加体の重水素化デカジン溶液を調製し、アルゴンで脱気後、これに UV 光 (波長 254 nm, 15 W × 6) を 10 分間照射して 1H NMR スペクトルを測定した。内部標準を使って原料と生成物のピーク面積比から収率を算出した。熱による脱酸素反応は次のように行った。NMR チューブ内で重水素化デカジン溶液を調製し、これに 170 °C で 10 分間加熱した。1H NMR スペクトルを測定して収率を算出した。

(6) 薄膜状態での脱酸素反応を調査した。酸素付加体のジクロロメタン溶液をガラス基板に塗布して薄膜を作製した。これに UV ランプ (波長 254 nm, 610 μW cm⁻²) を 8 分間照射した。その後、ジクロロメタンに溶解して UV-vis スペクトルを測定した。ベンタセン骨格に由来する 450–650 nm の吸収帯を調査した。

(7) チオフェンの替わりにピチオフェンを置換基とする化合物 1c を合成した。この電子特性や酸素付加反応を調査し、化合物 1a と比較した。これにより、π 電子系が拡張した影響を調べた。

4. 研究成果

(1) 化合物 1a,b をスキーム 3 に示す方法で合成した。どちらも紫色結晶として得た (1a: 溶点 > 300 °C, 1b: 溶点 > 296 °C)。これらの UV-vis スペクトルを図 1 に示した。450–650 nm の波長領域でベンタセン骨格の特徴的な吸収帯が観測された。これらの溶液を室内灯の下に放置するとベンタセン骨格の吸収帯が減少し、20 分間後にこれらの吸収帯がほぼ消失した。この退色速度は一次反応速度式に従い、速度定数 (k) は 1.7 × 10⁻³ s⁻¹ (1a) と 2.2 × 10⁻³ s⁻¹ (1b) であった。この現象はベンタセン骨格に由来する紫色が酸素付加により消失する。この反応過程を調査するためにベンタセン誘導体の UV-vis スペクトルを測定し、
タセンと溶存酸素との光付加反応に基づいており、溶存酸素の濃度が大過剰なため一次反応として観察された。

スキャーム3. ジチエンルベンサテン1a,bの合成経路

図1. 光存在下におけるUV-vis吸収スペクトルの経時変化：(a) 1a, (b) 1b

(2) 1H NMRスペクトルで1a,bの反応を追跡した結果、酸素付加体が単一物質として生成した（スキャーム2）。これは、光酸素付加反応が定量的（収率100%）に進行することを示している。そこで、試料100mgを含むジクロロメタン溶液（100mL）をベイレックス容器に入れ、太陽光を二時間暴露した。この結果、酸素付加体2a,bを収率81%と80%でそれぞれ単離した。

(3) 酸素付加体2a,bの分子構造を調査するためにX線構造解析を行った。ベンゼンあるいはトルエンから再結晶することで、測定に良好な単結晶を得た。化合物2aの分子構造を図2aに示した。チオフェンの硫黄原子を酸素原子を両側から挟み込んだ構造が観察された。また、S=O接触（2.71, 2.78 Å）はフェニルカルボニルの半径の和（3.32 Å）よりも小さく、二つのチオフェン環は少し傾いていた。一方、化合物2bでは、二つの構造（図2b,c）のディスオーダとして解釈された。両者とも二つのチオフェン環が両側から酸素原子を挟んでおり、C=O接触（2.62–2.69 Å）が観察された。このC=O距離はフェニルカルボニルの和（3.22 Å）よりも接合しており、化合物2bの方がチオフェン環の傾き角は小さかった。この結果、化合物2aは2bよりも比較して大なひずみエネルギーを保有していると考えられる。

図2. X線構造解析による分子構造（空間充填モデル）：(a) 化合物2a, (b, c) 化合物2bのディスオーダ構造

(4) 上述したひずみエネルギーを調査する目的で、B3LYP/6-31G(d)分子軌道計算を行った。化合物2aと2bの生成エネルギーを算出し、両者の値を比較した。この結果、2aの方が2bと比べて9.00 kcal mol⁻¹あるいは8.47 kcal mol⁻¹だけ不安定であり、2aは大きなひずみエネルギーを保有することができた。光酸素付加反応で1aの速度定数（k）が1bの値より小さい原因として、このひずみエネルギーが考えられる。

(5) 酸素付加体の脱酸素反応を調査した。化合物2aのデカリン溶液をアルゴンで脱酸素処理したのち、これにUV光（波長254nm）を10分間照射した。溶液の色は無色から紫色に変化し、ベンゼン1aが生成した。1H NMRによる解析から、2a→1aの変換率は44%であった。また、2aのアルゴン溶液を170 ℃で10分間加熱した場合、1aが収率30%で生成した。一方、2bの溶液にUV光を照射した場合、変換率は14%であった。この結果、2aは2bと比較して脱酸素反応が進行しやすい。
脱酸素反応の変換率を改善するには、ひずみエネルギーの高い酸素付加体を分子設計することが重要と考えられる。
(6) 溶液プロセスで半導体層を物製する場合、薄膜で 2→1 の脱酸素反応が進行する必要がある。そこで、酸素付加体の塗布薄膜を作製し、UV ランプ（波長 254 nm）を 8 分間照射した。これで UV-vis スペクトルで調べた結果、2a,b どちらの場合も 1a,b のベンタセン骨格に由来する吸収帯が観測された（図 3）。現在、薄膜での変換率を調査中であり、溶液中の値と比較検討する予定である。

図 3. 酸素付加体 2a,b の薄膜に UV 光を照射した後の UV-vis 吸収スペクトル：照射後の 2a (—) と 2b (—)、照射前の 2a (——)

(7) 置換基の π 電子系を拡張する目的で、ピチオフェンを通じたベンタセン誘導体（1c）の合成研究を行った。この合成経路はスキーマ 3 と同様にジオール体 3c を経由して 1c を作製するものであった。しかし、ビチオフェン基の転位反応が生じてしまうため化合物 4 が得られた（スキーマ 4）。そこで、スキーマ 5 のようにベンタセン 1d を合成し、これとホウ素試薬とのスズキ反応で目的物質 1c を得た。

スキーマ 4. 拡張ベンタセン誘導体 1c の合成時に生じた 3c→4 の転位反応

スキーマ 5. 拡張ベンタセン誘導体 1c の合成

化合物 1c の UV-vis 吸収スペクトルにおいて、ベンタセン骨格に由来する吸収帯が観測された。この極大値は 1a の値とほぼ同じ波長領域で観測された。一方、光存在下でスペクトル強度の経時変化を調査した結果、一次反応速度定数 (k) 7.0 × 10^3 s^{-1} を得た。この値は 1a の 24 分の 1 に相当し、π 電子系が拡張することで光酸素付加反応が大幅に遅くなった。現在、1c の酸素付加体 (2c) の単離を試みており、2a と同様に UV 光による分解反応を調べる予定である。

(8) 本研究課題について、これまでの成果を以下にまとめる。これらの成果は、スキーマ 6 に示す「環境調和型トランジスタ作製サイクル」として、溶液プロセスの要素技術になる。ベンタセン誘導体 1 は、光存在下で溶媒酸素と反応して酸素付加体 2 を与えた。この光反応は定量的に進行するが、その一次反応速度定数 (k) は置換基の種類に依存して変化した。化合物 1a,b では、太陽光の照射により酸素付加体 2a,b が高収率で単離された。酸素付加体 2a,b のデカリン溶液に UV 光を 10 分間照射すると、ベンタセン 1a,b がそれぞれ収率 44% と 14% で発生した。さらに、化合物 2a,b は有機溶媒への溶解度が高く、塗布法で薄膜を作製することができた。この薄膜に UV 光を 8 分間照射すると、ベンタセン 1a,b が生成した。この薄膜でトランジスタ特性が発現するか確認すべき課題は残されている。仮に、UV 光による脱酸素反応が良好に進行すれば、空気中の酸素と太陽光エネルギーを使ってベンタセン誘導体を循環させるサイクルができる。今後、ずるみエネルギーが高い酸素付加体を開発するなど改良を重ね、環境に調和した有機トランジスタ作製プロセスの完成を目指す。

スケーム 6. 環境調和型トランジスタ作製サイクル

5. 主な発表論文等
（研究代表者、研究分担者及び連携研究者には下線）
(雑誌論文)（計 13 件）
⑤ K. Ono, K. Tsukamoto, and M. Tomura, “5,5’-Di-4-pyridyl-2,2’-(5-tert-buty1-m-phenylenebis(1,3,4-oxadiazole)” Acta Crystallogr. 2009, E65, o1873.

〔学会発表〕（計 34 件）
① 橋詰純子, 他「BF₂ キレートしたキナクロドキノン誘導体の合成と性質」日本化学会第91春季年会、2011年3月27日、神奈川大学.
② 中島章裕, 他「1,3-ジケトンホウ素錯体を電子アクセプタユニットに用いたチオフェン類の合成と性質」日本化学会第91春季年会、2011年3月27日、神奈川大学.
③ 橋詰純子, 他「BF₂ キレートしたキナクロドキノン誘導体の合成と性質」第41回中部化学関係学協会支部連合秋季大会、2010年11月7日、豊橋技術科技大学.
④ 中島章裕, 他「オリゴチオフェン骨格を有する BF₂錯体の合成と性質」第41回中部化学関係学協会支部連合秋季大会、2010年11月7日、豊橋技術科技大学.
⑤ 橋詰純子, 他「BF₂ キレートしたキナクロドキノン誘導体の合成と性質」第21回基礎有機化学討論会、2010年9月10日、名古屋大学.
⑥ 小野克彦, 他「ジフルオロボロンによるチオフェン誘導体の機能化とn型有機半導体の開発」第21回基礎有機化学討論会、2010年9月10日、名古屋大学.
⑦ 橋詰純子, 他「BF₂ でキレートしたキナクロドキノン誘導体の合成と性質」日本化学会第90春季年会、2010年3月26日、近畿大学.
⑧ 中島章裕, 他「1,3-ジケトンホウ素錯体を電子アクセプタユニットに用いたオリゴチオフェンの合成と性質」日本化学会第90春季年会、2010年3月26日、近畿大学.
(10) 中島章裕, 他「オリゴチオフェン骨格を有するBF₂錯体の合成と物性」第40回中部化学関係学協会支部連合秋季大会、2009年11月8日, 岐阜大学.
(12) 橋詰純子, 他「テトラセン骨格を有するBF₂錯体の合成とn型半導体特性」第40回中部化学関係学協会支部連合秋季大会、2009年11月8日, 岐阜大学.
(13) 小野克彦, 他「超分子ナノチューブに包接された水分子ネットワークの構造と性質」第20回基礎有機化学討論会、2009年9月29日, 群馬大学.
(14) Katsuhiko Ono, et al. 「A Linear Chain of Water Molecules Accommodated in a Macrocyclic Nanotube Channel」 ISNA-13, 2009年7月21日, ルクセンブルク.
(15) 塚本健一, 他「マクロサイクルの自己組織化による超分子ナノチューブの合成と光学の特性」日本化学会第89春季年会、2009年3月29日, 日本大学.
(16) 中島章裕. 他「1,3-ジケトンホウ素錯体を電子アクセプタユニットに用いたオリゴマーの合成と性質」日本化学会第89春季年会、2009年3月29日, 日本大学.
(17) 山口裕之, 他「BF₂でキレートしたパルオロトラセン誘導体の合成と性質」日本化学会第89春季年会、2009年3月27日, 日本大学.
(18) 中川剛基, 他「1,4-ビス[(ジメトキシフェニル)エチニル]ベンゼンの結晶構造」第19回基礎有機化学討論会、2008年10月5日, 大阪大学.
(19) 山口裕之, 他「BF₂でキレートしたパルオロトラセン誘導体の合成と性質」第19回基礎有機化学討論会、2008年10月3日, 大阪大学.
(20) 塚本健一, 他「マクロサイクルの自己組織化による超分子ナノチューブの作製」第19回基礎有機化学討論会、2008年10月3日, 大阪大学.
その他14件

[図書]（計0件）
[産業財産権]（計0件）
[その他]
研究室ホームページ
http://www.ach.nitech.ac.jp/~physchem/