科学研究費補助金研究成果報告書

平成23年6月16日現在

機関番号:32678 研究種目:基盤研究(C) 研究期間:2008~2010 課題番号:20560025 研究課題名(和文) 半導体絶縁膜界面での電荷移動と欠陥形成機構の解明 研究課題名(英文) Elucidation of charge transfer at the interface between semiconductor and insulator and mechanism of defect formation 研究代表者 (MARUIZUMI TAKUYA) 丸泉 琢也 東京都市大学・工学部・教授 研究者番号:00398893

研究成果の概要(和文): 半導体基本素子である MOS(Metal Oxide Semiconductor)を構成す るゲート絶縁膜、シリコン、そして両者の界面に存在する欠陥構造を対象に、第一原理計算を 用いて、その特性を評価した。具体的な系として、Si/SiO2界面の Paセンター、Si 基板中のボ ロンクラスタ(B12)、そしてハフニウム絶縁膜中の酸素欠損、ハフニウム欠損の3種類の欠陥 について詳細な検討を行い、その特性を明らかとした。

研究成果の概要(英文): Native defects existing in the three constituent regions of MOS (Metal Oxide Semiconductor) device, gate insulator, silicon substrate, and their interface, were examined with a first-principles method in order to elucidate their atomistic properties concerned with reliability issues of MOS devices. A P_b center defect in a Si/SiO₂ interface, B_{12} cluster in a Si substrate, oxygen vacancy and hafnium vacancy in HfO₂ were practically investigated and their fundamental characteristics were revealed in detail.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	2, 100, 000	630, 000	2, 730, 000
2009年度	800, 000	240, 000	1, 040, 000
2010年度	800, 000	240, 000	1, 040, 000
年度			
年度			
総計	3, 700, 000	1, 110, 000	4, 810, 000

研究分野:半導体工学、計算科学

科研費の分科・細目 : 応用物理学・工学基礎 薄膜・表面界面物性 キーワード:界面 材料シミュレーション

1. 研究開始当初の背景

現在のユビキタス社会を支える情報機器、 とりわけ CPU やメモリの高機能化、高集積 化には目覚ましいものがある。これは、基本 素子となる MOS(Metal Oxide Semiconductor)デバイスの微細化によるところが 大である。一方、MOS デバイスの微細化に 伴い、各種の問題が顕在化している。その多 くは、MOSデバイスを構成するゲート電極、 ゲート絶縁膜、シリコン基板の個々に関する ものと、これら材料間に存在する界面に関す

るものである。ゲート電極に関しては、空乏 化が抑えられる金属電極を利用する場合の MOS デバイスの閾値電圧制御、ゲート絶縁 膜に関しては、高誘電率ゲート絶縁膜 (high-k)の材料選択とその信頼性の確保、そ して、シリコン基板に関しては、MOS 微細 化にともなうソース、ドレイン領域の浅接合 化等があげられる。また、ゲート絶縁膜とシ リコン基板との界面での電荷移動と界面欠 陥に起因すると考えられるバイアス温度不 安定性(Bias Temperature Instability)など が主要な課題としてとらえられていた。

2. 研究の目的

本研究では、背景で述べた通り、現行 MOS デバイスで、近々の課題となっている、ゲー ト絶縁膜とシリコン基板との界面での電荷 移動と界面欠陥の生成に関する研究に加え て、界面の上下に存在する high-k ゲート絶 縁膜中の欠陥とその荷電状態の解明、そして、 シリコン基板中の欠陥、とりわけ浅接合形成 時に予想される不純物の凝集欠陥(クラスタ リング)の 3 つの課題に焦点を絞り、MOS デバイス全体にわたり予想される欠陥構造 の特性を明らかとすることを目的とした。

3. 研究の方法

本研究では、各種第一原理計算プログラム を用い、先に述べた種々の欠陥構造を解析し、 その特性解明を進めることとした。

先ず、ゲート絶縁膜(SiO₂)とシリコン基 板(Si)との界面での電荷移動と界面欠陥の生 成に主眼を置く研究では、Gaussian03 分子 軌道プログラム[M.J. Frisch at al.,Gaussian Inc., Wallingford CT, 2004]を用い、SiO₂/Si 界面での Pbセンター(界面の Si ダングリン グボンドを終端している水素原子からなる Si-H 結合)の解離反応を詳細に調べた。分 子モデルとして、当初は、P_bセンタモデルと して (H₃Si)₃SiH、SiO₂ モデルとして 0(Si(OH)₃)₂を用いて解析を進めたが、研究の 進展に伴い、Si 基板と Si02 絶縁膜を一体でモ デル化した Si₃₄0₃₅H₄₃ 大規模界面クラスタモ デル (図 1) を用いて、ホールトラップした P. センターでの水素解離反応(1)を非制限分 子軌道計算で追跡した。Si 基板 Pbセンターと Si0,酸化膜酸素との距離を R とし、酸化膜酸 素とPLセンターから脱離した水素原子Hとの

図1 界面 P_b センターよりの水素原子脱離反応の解析に用いた Si₃₄ O_{35} H₄₃クラスタモデル。

距離rをパラメータとして解析を進めた。次 に、シリコン基板中の不純物のクラスタリン グに関する研究では、プラズマドーピング並 びに XPS(X-ray Photoelectron Spectroscopy)解析でその存在が注目されていた B12 クラスタについてその詳細を明らかとする こととした。B12 クラスタについては、その 対称性から、Icosahedral-B12 と Cubo-octahedral B12 クラスタが存在することが知られている ので、本研究では、シリコン基板中での双方 の多形の可能性について検討を加えた。具体 的には、図2に示す、Si(100)-c(4x2)表面構造 をもつシリコン9層、または20層からなる 周期的スラブモデルを用いて、B₁₂クラスタ の安定形状と存在位置、そしてアクセプタド ーパントとしての作用を調べた。また、ドー パントクラスタが表面近傍にある場合の、表 面 STM 像(Scanning Tunneling Microscopy) も計算し、STM 法が、ドーパントクラスタ の検出法として利用できないかどうかの検 討も加えた。以上の解析には、TAPP(Tokyo Ab initio Program Package)バンド計算プロ グラム[M. Tsukada et al. University of Tokvo, Japan, 1983-2008]を用い、平面波基 底、並びに内殻擬ポテンシャルで解析を進め た。図2には、Icosahedral-B₁₂クラスタ(グレ -表示)が、その中心を表面から第4層目に位 置する場合の解析モデルを示している。

図 2 B₁₂ クラスタ解析に用いた、Si(100)c(4x2)再構成表面をもつ 9 層スラブモデル。

また、high・k ゲート絶縁膜中の欠陥とその荷 電状態の解明の研究に関しては、最も有望視 されているハフニウム酸化物(ハフニア、 HfO₂)を対象に、膜中の酸素欠損、並びにハ フニウム欠損の形成に必要な生成エネルギ を各種荷電状態について計算した。生成エネ ルギは(2)式を用いて算出した。

$$\Delta E_F(\alpha, q) = E(\alpha, q) - \left(E_0^0 + \sum_i n_i \mu_i\right) + q(\varepsilon_F + E_{VBM})$$
(2)

ここで E_F(α,q)は欠陥状態α、荷電状態 q の 時の全エネルギ、Eo⁰は無欠陥構造の全エネ ルギ、n は無欠陥構造より増減した原子数、 µはnに対応した原子の化学ポテンシャル、 εFはフェルミエネルギ、EvBMは価電子帯の 最大値である。また、これらの欠損構造に、 Al、Mg、La などの金属原子が挿入される場 合の生成エネルギも同様に評価した。さらに、 禁制帯中に生じる欠陥準位の特性を評価す ると共に、元素添加に伴う、酸素欠損の増殖 など、縁膜中の酸素欠損がデバイス信頼性に 及ぼす影響を検討した。ハフニア HfO2は、 低温域で安定な monoclinic 相、中温域で安定 な tetragonal 相、そして高温域で安定な cubic 相をもつので、本研究では、monoclinic 相、cubic 相、そしてアモルファス構造の三 種の構造について解析を進めた。図3に単位 胞を三方向に2倍に拡大した96原子からな る monoclinic 相モデル構造を示す。解析には VASP(Vienna Ab-initio Simulation Package)を用いた。

a $modeline HfO_2 モデル (96 原子)$

4. 研究成果

(1) 先ず、ゲート絶縁膜 (SiO₂) とシリコ ン基板(Si)との界面での電荷移動と界面欠陥 の生成機構に関する研究の成果を纏める。図 4は、MOS デバイスが、電気的なストレスが 印加されたことにより、正に帯電(ホールトラ ップ)した界面に存在する Pb センタの水素原 子が、界面から脱離し、酸化膜中の酸素原子 と結合するまでのポテンシャルを、水素原子 として移動する場合 (UHF)、あるいは、陽に 帯電したプロトンとして移動する場合(RHF) について解析した結果を示す。明らかに、プ ロトンとして移動する場合のエネルギが高 く、途中段階が水素原子,つまり電子スピン が対を作らず、スピン分極した状態で酸化膜 中を移動する方が安定である事を示してい る。水素原子が、酸化膜中酸素から3 Å離れ

た位置にある場合の、スピン密度分布図を図 5 に示すが、水素原子の位置にスピン密度が 集中していることは明らかである。これ迄、 BTI、特に負電圧をゲート電極に印加した場 合に起こる NBTI に関しては、シリコン/絶 縁膜界面に界面準位が生成し、絶縁膜中に同 量の正固定電荷が発生し、MOS デバイス特性 の劣化を招く現象として知られていたが、そ のミクロな機構に関しては充分に理解され ていなかった。しかし、本研究で明らかとな ったように、界面準位と固定電荷の生成の機 構に関しては、先ず、界面欠陥を終端してい る水素原子が、ストレス印加により界面より 脱離し、酸化膜中を中性状態で酸素原子に向 かい移動、最終的には、ホール(正電荷)が、 界面より、酸化膜中に移動する機構であるこ とが明確となった。これにより、従来言われ ていたプロトン移動の機構[Appl.Phys. Lett., 86, 142103 (2005)]は妥当な機構ではない事を 明確に示すことができた点は、極めて大きい 成果であると考えている。SiO2/Si以外のゲー ト絶縁膜/シリコン基板界面での欠陥の多く は、P.センタ様の欠陥であり、今回の結論は、 同様な劣化現象の機構を考える上で、第一歩 となると考えられる。

図4 水素脱離反応のエネルギ曲線

図5 UHF 計算で得られたスピン密度分布図 (酸素-水素間の距離は、3Å)

(2)次に、B₁₂クラスターのシリコン基板 中での安定構造と安定位置に関する解析結 果についてまとめる。ボロンクラスタの中心 が、Si表面第2層目から、第5層目にあると きの、Icosahedral B_{12} 、Cubo-octahedral B_{12} の ポテンシャルエネルギを図6に示す。同図か ら明らかなように、Icosahedral B₁₂が、Si(100) 面近傍では、最安定構造である事が分かる。 また、安定位置は、クラスタ中心が最表面よ り、4層目にある場合が、最も安定となる。 また、多くの場合、B₁₂クラスタは、 cubo-octahedral 構造としてシリコン基板に導 入した場合でも、構造最適化の段階で、形状 を Icosahedral に変えることもわかり、cubooctahedral は Si 基板中で安定に存在できない ことも、今回の研究で初めて示すことができ た。さて、第4層目が最安定位置となる理由 であるが、シリコン 20 層モデルを用いた解 析から、B₁, クラスタの導入に必要となる V5 欠陥(最近接のシリコン5原子が欠如した構 造)のボイドサイズが、B₁₂ クラスタサイズ に最も適合する事に起因する事が分かった。

さらに、ボロンクラスタが第4層目に存在す る時、表面シリコン原子の再構成構造は、そ の影響を受けて、非対称構造をもつバックリ ングダイマーが、対称ダイマーへと構造を変 え、2 個のシリコン原子の表面高さが一致す る。この事は、表面の STM 像から、下部に 位置するボロンクラスタの存在を検知でき る可能性がある事を予想させる。事実、サン プルバイアス電圧を-1.0Vから-0.4Vの範囲で 変えた時、ボロンクラスタ直上近傍の STM 像には特徴的な変化が表れた(図7)。図中の ○印は、クラスタ直上を、→は近接の非対称 ダイマー原子を示しているが、矢印で示した B₁₂ クラスタ直上の対称ダイマーに近接する 2 個の非対称 STM 像が、サンプルバイアス 電圧を上げてゆくにつれ、強度が徐々に減少 している。この変化は、他の非対称ダイマー では現れておらず、B₁₂クラスタの存在によ るものであると言え、ボロンクラスタのマッ ピングの可能性を示すことができた。

(3) 続いて、ハフニア HfO₂ ゲート絶縁膜 の性能向上を目的として行われる、膜中欠陥 (酸素欠損、ハフニウム欠損) への元素添加 の影響を、図8、9に夫々示す。フェルミエ ネルギの基準は、価電子帯頂上である。酸素 欠損 Voは、フェルミエネルギの値にも依存 するが、"+2,0,-2"の荷電状態が安定、フェ ルミエネルギを計算バンドギャップ内に限 定すれば、+2の荷電状態が酸素欠損の安定 荷電状態であると判断できる。これは、 Negative-U として知られており、これまで の計算と一致している。さて、酸素欠損 Vo への元素添加(Alの場合には、Aloと記載、 他元素も同様に表記)についてであるが、そ の生成エネルギは La、Mg に比べ少なく、 Al 添加の場合が全ての荷電状態においてよ り低い生成エネルギを示している。また、中 性荷電状態では、Al 添加の生成エネルギが Vo生成エネルギに比べて低くなっている。以 上の結果は、monoclinic 相 HfO₂では、Al 原 子が欠損に取り込まれ易い事を示している。

図7 B₁₂クラスタを第4層目にもつSi(100) 再構成表面の占有STM像。

図 8 Monoclinic HfO₂構造での酸素欠損 V_o 生成エネルギと酸素欠損への各種元素添 加の生成エネルギ。

一方、Hf 欠損 V_{HF}に関しては、フェルミエネ ルギに関わらず、"-2"の荷電状態が安定であ る(図9)。さらに、Al、Mg、Laともフェ ルミエネルギによらず、Hf 欠損 V_{HF}の生成エ ネルギに比ベ低い値を示しており、 monoclinic 相では単純な Hf 欠損ではなく、 欠損位置への元素添加が生じ易いことが言 える。また、Al、Laについていえば、負の 生成エネルギをもつ領域が存在し、HfAlOも しくは HfLaOの形で、膜中に存在するであ ろうと予測できる。同様な結果が、cubic 相、 アモルファス相においても得られたため、上 記した酸素欠損、ハフニウム欠損への元素添 加効果に関する結論には大筋変わりはない。

図 9 Monoclinic HfO₂構造での Hf 欠損 V_{Hf} 生成エネルギと Hf 欠損への各種元素 添加の生成エネルギ。

最後に、ハフニア中での酸素欠損増殖への元 素添加効果を調べた結果を述べる。これ迄に、 Cubic 相では、ハフニウム欠損位置への La 元素の添加(LaHf)により、HfO2中の酸素欠 損 Vo の生成が抑制される事が、Umezawa らにより示されている[Appl. Phys. Lett. 91 132904 (2007)]。そこで、本研究では、Cubic 相、Monoclinic相の双方について、Al、Mg、 La 各元素の添加が酸素欠損生成に与える影 響を解析した。解析に用いたモデルは、 Umezawa らに同じく、隣接した 2 個の Hf 欠損を金属で置換したあと、その近傍にある 酸素原子を引き抜くのに要するエネルギで 評価した。中性酸素欠損生成エネルギと併せ て、結果を表1に示す。Cubic 相での La 添 加後の酸素欠損生成エネルギは、6.98eVと、 添加前の 6.34eV に比べ 0.64eV 高くなった。 この値は、Umezawa らが求めた値 [添加後 (6.29eV)は、添加前(5.58eV)に比べ 0.71eV 高くなった]と同様であった。Alの添加では、 0.17eV 生成エネルギが増加し、La と同様に、 酸素欠損生成が抑えられる事が分かった。-

方、Mgでは、生成エネルギが0.41eVと極め て低い値となり、逆効果をもたらすことが分 かった。次に、Monoclinic相では、Laは同 様な効果が認められるが、Al、Mgに関して は酸素欠損生成が助長される効果がある事 が分かった。これらの結果から、Al、Mg、 Laの元素添加を考えた場合、Laが信頼性向 上に関しては有利であるといえる。

表 1 元素添加後の酸素欠損 Vo 形成に必要 となるエネルギ(eV)

	Cubic	Monoclinic
Vo ⁰	6.34	9.27
La _{Hf} -Vo ⁰	6.98	9.37
Al _{Hf} -Vo ⁰	6.51	7.94
Mg _{Hf} -Vo ⁰	0.41	4.01

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計8件)

- ① <u>T. Maruizumi</u> and S. Ito, "Stable position of B₁₂ Cluster Near Si(001) Surface and Its STM images", ECS Trans. **33**, pp. 263-274(2010). (查 読有)
- ② J. Xia, Y. Takeda, N. Usami, <u>T. Maruizumi</u>, and Y. Shiraki, "Room-temperature electroluminescence from Si microdisks with Ge quantum dots", Optics Express, **18**, pp13945-13950(2010). (査読有)
- ③ M.Sato, T. Ohashi, K. Aikawa, <u>T. Maruizumi</u>, and I. Kitgawa, "Simulation of dislocation accumulation in ULSI cells of reduced gate length", Materials Science Forum, **645-656**, pp1682-1685 (2010). (查読有)
- ④ 佐藤満弘、大橋鉄也、<u>丸泉琢也</u>、北川功、
 "不純物がドープされた ULSI セルに生じる転位の結晶塑性解析"、日本機械学会論 文集(A編)、75、pp1056-1062(2009).(査 読有)
- ⑤ S. Ito, <u>T. Maruizumi</u>, and Y. Suwa, "Stable position of B12 cluster near Si(001)Surfaces and its STM images", 13th International Workshop on Computational Electronics, pp305-308(2009). (査読有)
- (6) T. Maruizumi, "Material Science for Nano-scale Electronic Devices", Activity Report 2008, Supercomputer Center, Institute for Solid State Physics, University of Tokyo, pp105-105(2008).
- ⑦ K.Tsutui,(8 名略), <u>T. Maruizumi</u>, H.

Nohira, T. Hattori, and H. Iwai, "Activated boron and its concentration profiles in heavily doped Si studied by soft x-ray photoelectron spectro-

scopy and Hall measurements", J. Appl. Phys.

104, 093709(5pages) (2008). (査読有)

⑧ <u>丸泉琢也</u>、牛尾二郎、"MOSFET の負バイ アス温度不安定性の微視的メカニズム"、 応用物理、77、pp676-680 (2008).(査読有)

〔学会発表〕(計15件)

- ①<u>T. Maruizumi</u>, K. Sawano, J. Ushio, S. Abe, and F. Iijima, Surface segregation behavior of Sb, B, and As dopant atoms on Ge(111) surface, E-MRS 2011 Spring & Bilateral Meeting, 2011 年5月10日、ニース(フランス)。
- ②<u>丸泉琢也</u>、夏金松、白木靖寛、Si 微小共振
 器中Ge量子ドットによる発光素子の開発、
 電子通信情報学会 2011 年総合大会、2011
 年3月14日、東京。
- ③飯島郁弥,安倍章太郎,澤野憲太郎, <u>丸泉琢也</u>、第一原理計算によるドーパント 表面偏析挙動の検討、2011 年春季第58回 応用物理関係連合講演会、2011 年3月24 日、神奈川。
- ④<u>T. Maruizumi</u> and S. Ito、Stable position of B₁₂ Cluster Near Si(001) Surface and Its STM images 、218th Electrochemical Society Meeting、2010年10月12日、ラスベガス。
- ⑤伊藤俊祐、<u>丸泉琢也</u>、諏訪雄二、Si 表面近傍におけるボロンクラスタの安定位置とその STM 像(4)、第71回応用物理学術講演会、2010年9月14日、長崎。
- ⑥中山利紀、<u>丸泉琢也</u>、HfO2中への元素添加の第一原理計算、第71回応用物理学術講 演会、2010年9月14日、長崎。
- ⑦ K. Ban-i, <u>T. Maruizumi</u>、First-principles Examination of As 3d5/2 X-ray Photoelectron Spectrum for Heavily Doped Arsenic Shallow Junctions、18th International Conference on Ion Implantation Technology、2010 年 6 月 7 日、京都。
- ⑧S. Ito, <u>T. Maruizumi</u>、Stable position of a boron cluster near Si surface 、 18th International Conference on Ion Implantation Technology、2010年6月8日、京都。
- ⑨伊藤俊祐、<u>丸泉琢也</u>、諏訪雄二、Si 表面近傍におけるボロンクラスタの安定位置(3)、2010 年春季第57回応用物理学会関係連合講演会、2010年3月18日、神奈川。
- ⑩伊藤俊佑、<u>丸泉琢也</u>、諏訪雄二、Si表面 近傍におけるボロンクラスタの安定位置 とそのSTM像(2)、第70回応用物理学会 学術講演会、2009年9月9日、富山。
- ①伴井香苗、野平博司、<u>丸泉琢也</u>、第一原理 計算による Si 中の As ドーパントの XPS 解 析、、第 70 回応用物理学会学術講演会、

2009年9月9日、富山。

- ①S. Ito, <u>T. Maruizumi</u>, and Y. Suwa、Stable position of B12 cluster near Si(001) surfaces and its STM images、13th International Workshop on Computational Electronics、2009 年5月28日、北京。
- ③伊藤俊佑、<u>丸泉琢也</u>、諏訪雄二、Si表面 近傍におけるボロンクラスタの安定位置 とそのSTM像、第56回応用物理学関係 連合講演会、2009年4月1日、茨城。
- ④ 佐藤満弘、大橋鉄也、<u>丸泉琢也</u>、"ULSI セル内に蓄積する転位のデバイス寸法依 存性に関する数値的評価"、日本機械学会 第21回計算力学講演会、2008年11月1 日、沖縄
- ⑤<u>丸泉琢也</u>、牛尾二郎、Si/SiO2界面における水素原子と正固定電荷の移動(3)、第69回応用物理学学術講演会、2008年9月2日、名古屋。

〔図書〕(計1件)

①<u>丸泉琢也</u>、夏金松、NTS、量子ドット - エレクトロニクスの最前線 - 分担執筆(Ge 量子ドットを用いた高効率室温発光素子の開発)、pp275-284。

6. 研究組織

(1)研究代表者
 丸泉 琢也 (MARUIZUMI TAKUYA)
 東京都市大学・工学部・教授
 研究者番号:00398893