科学研究費補助金研究成果報告書

平成23年 4月 1日現在

機関番号:13903 研究種目:基盤研究(C) 研究期間:2008~2010 課題番号:20560323 研究課題名(和文) 光化学堆積と光化学ドーピングによる室温動作薄膜水素センサーの作製 研究課題名(英文) Fabrication of thin-film hydrogen sensors operating at room temperature by photochemical deposition and photochemical doping 研究代表者 市村 正也(MASAYA ICHIMURA) 名古屋工業大学・工学研究科・教授 研究者番号:30203110

研究成果の概要(和文):光化学堆積法を用いて酸化スズ膜を堆積し、水素ガスセンサーを作製 した。光化学堆積法では、光照射によって溶液中で酸化スズ生成反応が起き、膜はナノ微粒子 の集合体となる。したがって膜は大きな実効表面積を持ち、より低い温度で高い感度が期待で きる。さらに感度を高めるため、光化学堆積法を発展させた光化学ドーピング法にて触媒であ る Pd を添加した。その結果、室温にて 10ppm 程度の低濃度水素にも高い感度を持つセンサー の作製に成功した。

研究成果の概要(英文): We fabricated highly sensitive room temperature hydrogen sensors based on SnO₂ films. The films were deposited by the photochemical deposition. The deposition solution contained 10mM of SnSO₄ (pH around 1.4). The solution dropped on the substrate was irradiated with the light. The sample annealed at 200°C showed current increase by a factor >10³ within 1 min for 5000 ppm hydrogen at room temperature. The sensitivity and response speed were further improved by UV irradiation using a low-pressure Hg lamp both in vacuum and in air.

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	2, 200, 000	660, 000	2, 860, 000
2009 年度	600, 000	180, 000	780, 000
2010 年度	700, 000	210, 000	910, 000
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

交付決定額

研究分野:半導体工学

科研費の分科・細目:電気電子工学 電子デバイス・電子機器 キーワード:水素センサー、光化学堆積、酸化スズ

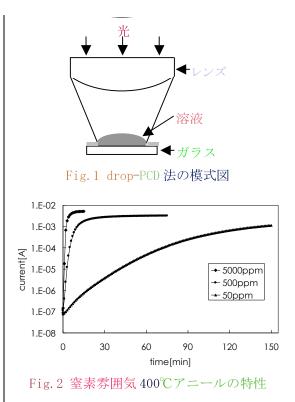
1. 研究開始当初の背景

新エネルギー源としての燃料電池の重要 性は広く認識されており、すでに試験的な導 入は始まっている。しかし燃料電池の燃料で ある水素は、大きな拡散係数、広い爆発濃度 域、小さな発火エネルギーを持っているため、 都市ガスよりはるかに危険性は大きく、水素 の利用に際しては安全性の確保が重要な課 題となる。そして安全性の確保のために必要 なのが水素センサーであり、微量な水素漏れ を検知することで、爆発事故を未然に防ぐこ とができる。現在すでに水素センサーは市販 されており、その材料として一般に酸化スズ Sn0₂の焼結体が広く用いられている。これら センサーは酸化スズの焼結体を 300~400℃ に加熱した状態で用いる。よって小型化には 限界があり、また動作させ続けるには電力を 必要とする。しかも高温のセンサー自体が発 火源となる恐れさえある。燃料電池の利用が 本格化すれば、水素貯蔵・運搬のための施設 設備も多数必要になる。安全の確保のために は、センサーはいたるところに偏在し、かつ 燃料電池の動作時だけでなく24時間常に 作動し続けなければならない。したがって水 素社会には、現行の製品とは異なる、新しい 水素センサーが必要である。

2. 研究の目的

本研究で開発を試みる水素センサーは次 の二つの特徴をもっている。

・薄膜であり、シリコン酸化膜を介してシリ コン基板上に作製できる。(小型化可能) ・室温で動作し、加熱機構が不要である。(低 消費電力、シリコン集積回路との適合) この二つの特徴をもつセンサーが作製でき れば、信号処理を行うシリコン集積回路と一 体化させ、ワンチップの水素センサーが実現 する。独立した検出計器が小型化できるだけ でなく、燃料電池を含むシステム内の複数箇 **所にセンサーを配置、安全性を確保すること** も可能になる。

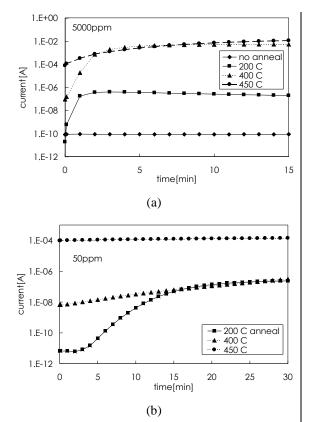

3.研究の方法

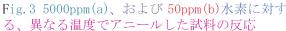
この目的を達成するために、本研究では独 自に開発した光化学堆積法を用いて酸化ス ズ膜を堆積し、ガスセンサーの作製を試みる。 抵抗型ガスセンサーは、上記のように、雰囲 気によって表面電荷量が変化し物質の電気 抵抗が変わることを基本の動作原理とする。 そのため、実効的な表面積が大きくなるよう 粉末の焼結体を通常用いる。薄膜状のセンサ ーの場合も、感度を高めるには膜をできる限 り微小な粒子で構成する必要がある。光化学 堆積法では、光照射によって溶液中で酸化ス ズ生成反応が起き、ナノ微粒子が形成、それ が基板に付着するため、膜はナノ微粒子の集 合体となる。したがって膜は大きな実効表面 積を持つ。また粒子が小さいため(表面/体積 比が大きいため)、表面の状態によって膜全体 の抵抗が大きく変わる。よって従来用いられ てきた径の大きな粒子の焼結体よりも反応 性が高く、より低い温度で高い感度が期待で きる。

本研究では、さらに感度を高めるため、光 化学堆積法を発展させた光化学ドーピング 法にてパラジウム Pd を添加する。Pd イオン を含む水溶液を酸化スズ膜上に滴下し、紫外 線を照射することで Pd イオンが還元され、 結果的に Pd が膜表面さらに内部にも添加さ れる。Pd は水素分子の分解に際し触媒として 働くので、ドーピングによって水素に対する 反応性が増すと期待される。

4. 研究成果

(1)素子作製
純水に SnSQ₄:10mM を溶かし、硝酸により
pHを1.4に調整したものを試料作製溶液とし




た。アルキルベンゼンで脱脂洗浄したガラス 基板上に直径13mmの円状のマスクを施した。 Fig.1 に示すように基板上に試料作製溶液を 数滴垂らし、レンズで集光された超高圧水銀 ランプの光を照射した。溶液は光に反応し、 すぐに白濁してしまうため、5 分毎に純水洗 浄と乾燥を施して再度溶液を滴下した。5分 では薄膜が十分に堆積しないため、これらの 工程を 10 回繰り返した。 膜厚は 0.15μm と なった。作製された Sn0, 薄膜上に 0.2mm の間 隔があるくし形の Au(金)電極を真空蒸着し た。後、Pd 溶液(PdC12:177mg、濃塩酸:0.5ml、 純水:500ml)を数滴垂らし、光を照射するこ とで Pd ドーピングを行った。Pd は水素に対 がある。その後、窒素または酸素雰囲気中で、 温度を変えてアニールを施した。アニールは チャンバー内を真空引きした後、雰囲気ガス の圧力を 0.1atm にして行う。20 分で目標の 温度に到達し、1時間温度を保持した後、ヒ ーターの電源を切り自然に温度を下げた。

(2) センサー特性

窒素雰囲気中 400℃でアニールした試料を 作製し、水素濃度を変えて変化を調べた。測 定は全て同じ試料を用いた。測定結果を Fig. 2 に示す。横軸が水素を注入してからの 時間であり、縦軸が 2V 印加時の電流の値で、 変化が大きいため対数で表示している。

濃度ごとの電流の変化を比較すると、 5000ppmでは水素注入直後から大幅な電流の 増加が見られ、5分程で電流の変化が安定化

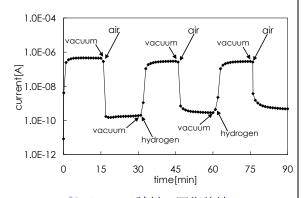
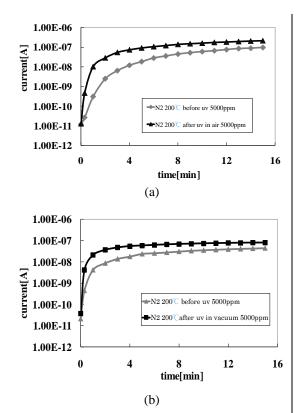
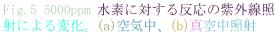


Fig.4 200℃アニール試料の回復特性

した。15 分後の電流の増加は 6×10⁴ 倍になっ ている。500ppm、50ppm と濃度が減少するに 従って安定化するまでの時間が増え、反応速 度の減少が見られた。電流の到達点は濃度と ともに減少する傾向があるが、濃度の変化に 比べれば変化の大きさは小さい。濃度が高け れば水素との反応が活発に起こり変化がよ り高速になるが、低濃度でも時間が経過する ことで反応する水素が増えていき、最終的に は高濃度とあまり変わらない電流の変化を 示すと考えられる。反応速度の濃度依存性は 強く、水素濃度 5000ppm では 2 分後には電流 が 7700 倍になっているが、500ppm では 7700 倍に到達するのは 10 分後、50ppm では 120 分 後となっている。このように反応速度から水 素の濃度をある程度判別できると考えられ る。


アニール温度を変えることでセンサ特性 にどのような違いがあるか調べた。アニール の雰囲気は窒素 0.1atm である。アニール温 度は 450℃、400℃、350℃、300℃、200℃と した。5000ppm の水素に対する測定結果を Fig. 3(a) に示す。450℃では水素を注入する 前から電流が比較的高く、水素注入後も電流 の変化は緩慢であり、電流の変化も小さかっ た。アニール温度が減少するにつれて水素注 入前の電流の値は減少した。300~400℃の試 料では約5分後に安定化するという結果を示 したが、反応速度の大きな差は見られなかっ た。また、350℃が最も大きな電流変化を示 し、変化倍率は 1.2×10⁶ であった。200℃の 昇が見られ、1 分後には、ほぼ多 低いアニール温度の試料が高い反応速度を 有することを示す。しかし、アニールを施し ていない試料は水素に対してまったく反応 を示さなかったことから、ある程度の温度が


次に水素濃度 50ppm のガスを用いて、各ア ニール温度の試料の違いを調べた。測定には 5000ppm の水素測定に用いた試料と同じもの を使用した。結果を Fig. 3(b)に示す。450℃ の試料ではほとんど反応しなかった。300~ 400℃の試料では電流の増加が見られたが、 その変化量は小さかった。また、反応速度も 遅く、15 分後でも電流は安定化しなかった。 200℃では、他の温度と比べて大きな電流の 増加を示した。また、反応速度も速いことが 見て取れる。よって低温アニールによって高 い反応速度の水素ガスセンサが作製可能で あることが分かる。

200℃でアニールされた試料の回復特性を 評価した。水素注入まではこれまでと同じ条 件で測定し、水素注入15分後から1分間、 水素を取り除くため真空引きをし、その後大 気を1.0atm まで注入した。水素濃度は 5000ppmとした。測定結果をFig.4に示す。 400℃でアニールされた試料では、大気に15 分間さらしても1桁ほど電流が減少しただけ だったが、200℃の試料では、大気を注入し た瞬間から大幅な電流の減少が確認できた。 これは水素に対する反応速度と同様の結果 を示していることから、低温アニールされた 試料でのガスに対する敏感な反応が確認で きた。

(3)紫外線照射効果

前節でもっともよい特性を示した窒素雰 囲気 200℃アニールの試料に対し、低圧水銀 灯を用いて紫外線照射を行い特性変化を調 べた。低圧水銀灯照射は空気中の酸素をオゾ

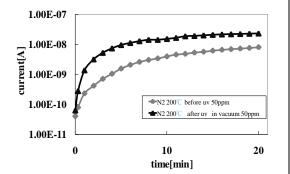


Fig.6 50ppm 水素に対する反応の真空中紫外 線照射による変化。

ン化し、それがセンサー表面状態をより酸素 過剰な状態にし、水素との反応性が増すと予 想した。オゾン生成とそれ以外の効果を区別 するため空気中と真空中で照射を行った。

結果をFig.5に示す。空気中、真空中のい ずれの照射によってもほぼ同様の高感度 化・高速化が観測された。低濃度水素に対し ても照射効果はFig.6に示すように顕著で、 50ppm水素で1分間に電流値が一桁以上増加 するきわめて高感度なセンサーを実現でき た。

紫外線照射による感度向上のメカニズム を解明するためX線光電子分光測定を行った が、Pdの化学結合状態など表面状態の紫外線照射 による有意な変化は観察されなかった。真空中、 空気中いずれにおいても紫外線照射の効果が得ら れることから、その効果は気体分子と酸化スズ膜 表面との反応が原因ではなく、酸化スズ膜内部の 特性変化が原因と推測される。

(4) 成果の位置づけ

室温で高い感度を持つ抵抗型水素センサーは報告例がなく、本研究のセンサーはその 先例になると考えられる。一方で、電流値が 小さすぎるため、簡易な測定器では測定でき ないという問題点を有する。感度を下げずに 素子の抵抗値をコントロールすることが、最 終的な実用化には必要であろう。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

①<u>M. Ichimura</u>, Aodengbaoleer, and T. Sueyoshi, "Properties of Gas Sensors Based on Photochemically Deposited Nanocrystalline SnO₂ Films", Phys. Status Solidi C Vol.7, pp.1168-1171 (2010) 査読有り

② <u>M. Ichimura</u> and T. Sueyoshi,, "Room Temperature Gas Sensor with a High Sensitivity to Hydrogen Based on SnO₂ Films Prepared by Photochemical Techniques", Jpn. J. Appl. Phys. Vol.48, 015503 (2009) 査読有り

〔学会発表〕(計2件)

①Dengbaoleer Ao, <u>M. Ichimura</u>, "UV irradiation effects on hydrogen sensors based on SnO_2 thin films fabricated by the photochemical deposition", Renewable Energy 2010, 2010.6.30, 横浜

⁽²⁾<u>M. Ichimura</u>, Aodengbaoleer, and T. Sueyoshi, "Properties of gas sensors based on photochemically deposited nanocrystalline SnO₂ films", 23rd Int. Conf. Amorphous and Nanocrystalline Semiconductors, 2009.8.24, Utrecht, Netherlands

 6.研究組織
(1)研究代表者
市村 正也 (MASAYA ICHIMURA)
名古屋工業大学・工学研究科・教授 研究者番号: 30203110