科学研究費補助金研究成果報告書

平成23年 6月10日現在

機関番号:82636 研究種目:基盤研究(C) 研究期間:2008~2010 課題番号:20560343 研究課題名(和文) 導波管型準平面ホットエレクトロンボロメータの研究開発

研究課題名(英文) Study on wave-guide quasi-planer hot electron bolometers.

研究代表者

川上 彰 (KAWAKAMI AKIRA) 独立行政法人情報通信研究機構・未来 ICT 研究センターナノ ICT グループ・主任研究員 研究者番号:90359092

研究成果の概要(和文):

テラヘルツ帯ホットエレクトロンボロメータ(HEB)の中間周波数(IF)の広帯化を目指し、準平 面型ナノブリッジ構造、ミキサ特性評価および SiO₂厚膜基板による導波管型 HEB を検討した。 ブリッジ幅約 450 nm、長さ約 25 nm のナノブリッジ作成プロセスを確立、準光学準平面型 HEB ミキサを試作し、ミキサ雑音温度、IF 帯域幅の評価を行った。導波管型ミキサ作製を目指し、 成膜により形成した膜厚 20 ・m の SiO₂基板を形成、同基板の良好な平坦性を確認した。

研究成果の概要(英文):

To improve the IF bandwidth of hot-electron bolometers (HEB), we have developed fabrication process of quasi-planer nano-bridges. Quasi optical HEB mixers constructed by quasi-planer nano bridges were fabricated and the lengths and widths of nano-bridge were about 450 nm and 25 nm, respectively. The DSB receiver noise temperature and IF bandwidth were evaluated. The SiO₂ film having about 20 μ m thickness was deposited as a substrate for waveguide mixers, and good flatness was confirmed.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	1,400,000	420,000	1, 820, 000
2009年度	1, 200, 000	360, 000	1, 560, 000
2010年度	900, 000	270, 000	1, 170, 000
年度			
年度			
総計	3, 500, 000	1,050,000	4, 550, 000

研究分野:超伝導エレクトロニクス

科研費の分科・細目:電気電子工学・電子デバイス・電子機器 キーワード:HEB、NbN、エピタキシャル、テラヘルツ、導波管

1. 研究開始当初の背景

近年の異常気象等に伴う地球環境計測や、 銀河、星団、惑星系等の天体形成機構の解明 を目指す電波天文分野において、テラヘルツ (THz)周波数領域で低雑音動作する受信機の 開発が強く望まれている。我々はこの周波数 帯における低雑音へテロダイン受信機とし て、エピタキシャル窒化ニオブ(以下NbN)超 伝導薄膜を用いたホットエレクトロンボロ メータ(以下HEB)の研究開発を行ってきた。 これまでに我々が試作した準光学HEBミキ サは0.78 THzにおいて受信機雑音温度615 K(DSB)の低雑音特性を達成しており[1]、国 外の優れた報告に対しても同程度の性能を 示した。HEBは超伝導SISミキサの性能低下が 予想される1.4 THz以上におけるミキサ素子 して期待されている。しかし現状のHEBは中 間周波数(以下IF)帯域が3 GHz程度と狭く、観 測時間の短縮、リアルタイム測定等の面から 広帯域化は重要な課題である。また高品質な NbN極薄膜を成膜するためにエピタキシャル 薄膜を用いているが、その成長には種結晶と して比較的誘電率の高い酸化マグネシウム (以下MgO)単結晶基板が必要であり、導波管 型ミキサ化を困難にしている。

本研究課題は我々が開発した窒化チタン (以下TiN)/NbN/MgO多層膜エピタキシャル成 長技術を活かし[2]、IF広帯域化及び素子特性 再現性の向上を目指している。併せて現在 SiO₂厚膜成膜技術を用い、MgO基板上にエピ タキシャルNbN-HEBを作成、その後同素子上 に基板とする数+µmのSiO₂を成膜、最後に MgO基板を除去し、エピタキシャルNbN-HEB を石英(以下SiO₂)基板に転写することで、導 波管型ミキサの実現を目指している。

2. 研究の目的

研究期間内に於いて THz 周波数領域における極低雑音ミキサとしての準平面型 HEB の作成プロセスの確立とその可能性を明ら かにする。本研究課題は新素子構造による IF 帯域の広帯域化と素子特性の高再現性の達 成、薄膜 SiO₂ 基板上への素子作製手法の検討 により、THz 帯 HEB の実用化に向けた研究 開発を目的としている。

3. 研究の方法

(1) 準平面型ナノブリッジ構造の作製

常伝導電極としてNbNと格子整合性の良い TiNを用い、準平面ナノブリッジをエピタキ シャル多層膜で構成する作製プロセスを検 討、その直流特性等評価を行った。

(2) <u>準平面型NbN-HEBの特性評価と導波管型</u> <u>HEBミキサの検討</u>

THz帯ミキサ雑音温度評価、IF帯域評価お よび導波管型ミキサの検討としてSiO₂厚膜基 板の評価を実施した。

(3) 中赤外光ナノアンテナの検討

本来HEBはその動作原理から周波数依存 性を持たない。即ち微細化により微小アンテ ナおよび検出器を作成できれば、中赤外領域 の検出器として活用できると考えている。本 研究の展開として、光ナノアンテナを用いた 中赤外検出器の検討を行った。

4. 研究成果

(1)準平面型ナノブリッジ構造の作製

NbN ブリッジ構造による HEB は、テラヘ ルツ帯で優れた受信機特性を示しているが、 その IF 帯域幅は現状では3 GHz 程度に留ま り、他のサブミリ波帯ミキサに比べて充分な 値ではない。一対策としてブリッジをナノサ イズに極小化して、ホットエレクトロンをご く短時間で電極へ拡散させることが考えら れている。極めて短いブリッジを作成できれ ば、IF 帯域を格段と向上できると考えられて いる(例えば長さ 100 nm のアルミニウムブリ ッジの場合、予想 IF 帯域は 160 GHz)[3]。そ こで数十 nm のブリッジ長を有するナノブリ ッジを安定に作製できる準平面型 NbN-HEB を検討した。常伝導電極として NbN と格子整 合性の良い TiN を用い、全てエピタキシャル 多層膜で構成する準平面型 NbN ナノブリッ ジ作製プロセスを開発、特性評価を行った。

図1に準平面型 NbN ナノブリッジの概略 図を示す。ここでブリッジ長は両電極間の MgO 膜厚により規定でき、通常の光リソグラ フィでは困難な数十 nm 以下のブリッジを安 定して作製することができる。図2に作製し

図1準平面型 NbN ナノブリッジの概略図

SEM 像(a) と電流一電圧特性(b)

図4 準光学準平面型 NbN-HEB の 電子顕微鏡写真

た準平面型 NbN-ナノブリッジの SEM 像(a) を示す。SEM 像からブリッジ幅は約450 nm、 また TiN 上部電極膜厚 200 nm と TiN 傾斜部 の幅から、角度 θ は約 25 degree と見積もられ た。また同時に角度θおよび層間 MgO 膜厚か らブリッジ長は約25 nm と考えられる。NbN ナノブリッジの転移温度を測定したところ 約12.1Kの良好な超伝導特性を示した。既に 電極に NbN を用いた場合、全ての薄膜がエピ タキシャル成長することは確認しており[4]、 同様に今回のブリッジも構成する TiN、MgO、 NbN 各薄膜が相互にエピタキシャル成長し ていると考えられる。図2(b)に典型的な電流-電圧特性を示す。臨界電流 1.3 mA に対して 素子抵抗 R_N=11 Ωであった。ブリッジ幅 0.3 $\sim 0.6 \mu m$ のNbNナノブリッジにおいて R_N は 5~40 Ωが得られ、準平面型エピタキシャル

NbN-HEB 作製プロセスを確立することが できた。

しかし電極構造に起因する寄生容量成分 が約50 fF と大きく、THz 帯でのミキサ応用 において問題であった。そこで電極面積の縮 小及び層間絶縁 MgO 薄膜の増加により、同 容量を約1/10である約5 fFまで低減させるこ とを試みた。試作したナノブリッジは上部 TiN 電極をブリッジ幅でエッチングし、その

面積をこれまでの 1/5 である約 $0.6 \times 2 \mu m^2$ ま で微小化、また層間 MgO 膜厚を 2 倍(20 nm) にすることで、対向電極部の静電容量の軽減 を図った。図 3 に対向電極を微小化した準平 面 NbN ナノブリッジの I-V 特性を示す。測定 したナノブリッジは 4 接合までの直列特性を 重ねて表示している。ナノブリッジ長約 50 nm、幅 0.6 μ m、臨界電流約 0.7 mA、一個当 たりの素子抵抗約 30 Ω で、臨界電流、素子抵 抗共に良好な特性を示した。

(2) <u>準平面型NbN-HEBの特性評価と導波管型</u> HEBミキサの検討

TiN 電極の対向面積を微小化した NbN ナノブ リッジを用い、2 直列化した準平面型 HEB を 試作、880 GHz におけるミキサ雑音評価を試 みた。図4 に作成した準光学準平面型 NbN-HEB の顕微鏡写真を示す。試作したミ キサは2直列の準平面型 NbN ナノブリッジ と、twin-slot アンテナ他から構成されている。 図5 にミキサ雑音温度評価に用いた THz 帯 雑音温度評価系と、77K/300K 熱源に対する IF 応答特性を示す。測定した雑音特性は十分 な応答が得られず、約9000 K (DSB) に留ま った。そこで測定した準平面型 HEB を電子 顕微鏡観察したところ、コプラナー線路を構 成する Al 線路が片方のナノブリッジ下部電

極と重なっていることを確認した。このこと が対向面積を増大、即ち寄生容量が増大し多 と考えられる(図 6 参照)。今後さらに素子作 成精度を向上させ、特性の向上を進める。

次に IF 特性評価と導波管型ミキサ作製の 検討を行った。図 7 に IF 評価システム(a)と IF 帯域測定結果(b)を示す。従来線用デュアー にて IF 帯域評価を実施していたが、今回新た に簡便な測定系を構築、測定棒で容易に評価 できる 20 GHz 帯 IF 特性評価系を構築した。 測定した準平面型 NbN-HEB は 2 直列のナノ ブリッジによる準平面型 NbN-HEB である。 結果として約 1.7 GHz のカットオフ周波数を 測定したが、今後ブリッジ長、ブリッジ膜厚 等による IF 帯域依存性を明確にする。

そりと基板厚の評価

本研究において検討している準平面型 NbN-HEBは、単結晶MgO基板を用いエピタ キシャル多層膜で構成している。このことに より超伝導特性の高品質化と優れた再現性 を確保しているが、従来多く用いられてきた SiO2基板に比べMgO基板は比較的高い誘電 率を有し、導波管型ミキサの作成を困難なも のにしてきた。そこで今回、MgO基板上に導 波管型ミキサ素子を作製し、その後、同素子 上に基板とする20 µmのSiO2を成膜、最後に MgO基板を酸で除去する方法で、SiO2基板上 にエピタキシャルNbN 導波管型ミキサの形 成を試みた。

SiO₂はrfスパッタリング装置を用いて成膜 している。SiO₂基板のそりと厚さをレーザー 顕微鏡により評価した結果、長さ 1mm のス キャン領域に対し、基板の中央部の盛り上が りは約 0.7 μ m、また基板厚は設定厚さ 20.2 μ m に対し誤差+6%で作成できることを確認 した(図 8 参照)。今後、導波管型準平面 NbN-HEB の作製および評価系整備を進める。

(3) 中赤外光ナノアンテナの検討

HEBはその動作原理から周波数依存性を 持たず、微小化により遠赤外のみならず、 中・近赤外領域の検出器としても期待するこ とができる。そこで光-検出器結合方式である アンテナ構造の微小化を試み、NbN-HEBの中 赤外検出器への展開を検討した。

中赤外領域でのアンテナ構築にはナノサ イズの微細構造作成技術が必要である。そこ で全リソグラフィに電子線描画を用い、また 低ダメージで耐フッ素性の高いイオンビー ムスパッタ MgO 薄膜とエッチング加工精度 の高い 200nm 程度の NbN 薄膜を無機レジス トとして用いた作成プロセスを考案した。図 9 に素子の顕微鏡写真及び概略図を示す。作 製したナノアンテナは、長さ 2400 nm、幅 450 nm、厚さ 100nm の Al 薄膜ダイポールアンテ ナで、このアンテナ中心部に幅 450 nm、長さ 約 150 nm、 膜厚 6 nm の NbN 薄膜ブリッジ (負荷抵抗約 60 Ω)を結合させた。

ナノアンテナ特性評価には近赤外フーリエ 変換赤外分光光度計(FTIR)を使用した。アン

図 10 アンテナインピーダンスの計算とFTIR 透過率測定

テナインピーダンスと負荷抵抗が整合した 場合、入射光を効率良く熱に変換することか ら、FTIR で透過率を測定した場合、アンテナ 特性は吸収特性として現れると考えた。ここ で有意な吸収特性を得るために MgO 単結晶 基板の中心 1mm×1mm の領域内全面に、縦 2.5 μ m 横 4.5 μ m 間隔でナノアンテナを配置 した。今回 FTIR 測定は全て室温にて実施し ている。またナノアンテナ設計・計算には電 磁界シミュレータ sonnet を用いた。

図 10 に MgO 屈折率に λ =5.35 µm における 報告値 n=1.62[5]を用いた場合のアンテナイ ンピーダンスの計算結果と、FTIR 透過光測定 結果を示す。測定結果より波数 1400cm⁻¹ (42 THz)付近で、アンテナと一致した偏光方向の 透過率特性において明瞭な吸収特性が観測 された。また計算結果から同波数付近で NbN 薄膜負荷設定値(60 Ω)との整合が予想される。 また波数依存性もアンテナ - 負荷間のイン ピーダンス整合で定性的に表現できること を確認しており、同吸収はナノアンテナ構造 によると考えている。

次にアンテナ給電部にある NbN 薄膜ブリ ッジ部の超伝導特性の測定を行った。図 11 に超伝導特性評価用素子 SEM 像と I-V 特性を

SEM 写真と I-V 特性

示す。測定した素子は負荷抵抗(NbN 薄膜ブ リッジ、膜厚 6 nm、長さ約 200 nm、幅 200 nm) を有するナノアンテナの 3 直列である。I-V 特性から臨界電流は約 160 μA を示し、また 超伝導転移温度は 12.2 K が得られ, 膜厚 6 nm として良好な値を示した。今後、NbN-HEB を基にした中赤外光検出器の研究・開発を進 める。

参考文献

- [1] H. Kataoka, et al, IEEE Trans. Appl. Supercond., vol. 15, pp. 469-, 2005.
- [2] A. Kawakami, et al, IEEE Trans. Appl. Supercond., vol. 15, pp. 984-, 2005.
- [3] B. S. Karasik, et al, IEEE Trans. Appl. Supercond., vol. 9, pp. 4213-, 1999.
- [4] 川上彰、他,第 55 回応用物理学関係連合 講演会 28a-ZA-4、日本大学、2008 年
- [5] R. E. Stephens, et al, J. Res. Nat. Bur. Stand, vol. 49, pp. 249-252, Oct. 1952.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計1件)

 <u>A. Kawakami</u>, "Fabrication of Nano-Antennas for Superconducting Infrared Detectors," IEEE Trans. Appl.Supercond., Volume 21, pp632-635, 2011.

〔学会発表〕(計5件)

- <u>川上彰</u>、ナノアンテナ結合型超伝導近赤外 光検出器の評価、第71回応用物理学会学 術講演会、2010年9月16日、長崎大学(長 崎)
- 2. <u>A. Kawakami</u>, Fabrication of Nano-antennas for Superconducting Infrared Detector, Applied Superconductivity Conference, August 5, 2010, Omni Shoreham Hotel, Washington, D.C., USA

- 3. <u>川上彰</u>、ナノアンテナ結合型超伝導近赤外 光検出器の検討、第57回応用物理学関係 連合講演会、2010年3月19日、東海大学 (神奈川)
- <u>川上彰</u>、準光学エピタキシャル NbN/MgO/NbN SIS ミキサの設計、第70 回応用物理学会学術講演会、2009年9月8 日、富山大学(富山)
- <u>川上彰</u>、準平面型ナノブリッジによる NbN ホットエレクトロンボロメータの検 討、第69回応用物理学会学術講演会、2008 年9月3日、中部大学(愛知)
- 6. 研究組織
- (1)研究代表者

川上 彰 (KAWAKAMI AKIRA) 情報通信研究機構・未来 ICT 研究センター ナノ ICT グループ・主任研究員 研究者番号:90359092

)

)

(2)研究分担者

(研究者番号:

(3)連携研究者

(

研究者番号: