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AR EERES (EX) Investigation of the physiological functions of anion channels during
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We investigated the physiological functions of anion channels in mouse embryonic stem cells
(mES) and human bone marrow-derived mesenchymal stem cells (h(MSCs) during the
differentiation to cardiac myocytes or adiposities. Using RT-PCR, the expression of mRNA
for CIC-3, CIC-4 and Bestrophin could be detected in both undifferentiated mES cells and hMSCs. In the
patch clamp experiments, Ca®* activated outward K* currents (Ixc.) could be recorded, however, Ca®*
activated chloride currents were too small to analyze. Volume sensitive Cl currents were could be
recorded in the hypotonic solutions. We concluded that anion channels exist in mES cells and hMSCs and
Cl currents coded by CIC-3 have a function in undifferentiated hMSCs. We have demonstrated Cai
oscillations in hMSCS previously (2003, 2004, 2005, in Cell Calcium) , therefore, we hypothesize that
Cai might affect the differentiation processes. When Ca channel blockers were added in the culture
medium, adiposeness were inhibited, indicating the contribution of Cai to the differentiating processes
from mesenchymal stem cell to adiposities.
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[Title]

“Blocking kinetics of cftr channel by aromatic
carboxylate positional isomers characterised using
a novel amplitude distribution analysis method.”
[Abstract]

To investigate the pore structure of the cystic

fibrosis transmembrane conductance regulator
(CFTR) channel, we performed a systematic pore
probing on CFTR channel pore with a series of
small aromatic carboxylic acids, including their
positional isomers, e.g., 9-anthracene carboxylic
acid (9-AC) and 1l-anthracene carboxylic acid
(1-AQC).

Small compounds presumably interacting
the channel protein with a few points are sensitive
to structural changes of the binding site. However
such low affinity blockers show fast -
intermediate blocking kinetics which give us the
overall affinity, but not on- and off- rates
separately. To overcome this problem, we
developed an iterative simulation method to
estimate the on- and off- rate constants in the
9-AC or 1-AC block from the single channel
amplitude distribution.

The newly developed Amplitude Distribution
Analysis (ADA) program first generated a
single-channel current according to the given
kinetic scheme and added a Gaussian noise to the
currents for mimicking the background noise. The
simulated currents were low-pass filtered and
digitized at the same frequencies as those in the
experiments and binned into an amplitude
histogram. Then the program repeats a direct
likelihood comparison between the simulated and
experimental current amplitude distributions to
find the best fitted values for the blocking kinetic
parameters.

The ADA program showed that the off-rate
of 1-AC block is 3-fold slower than that of 9-AC
and the on-rate of 1-AC is ~3-fold faster than that
of 9-AC. The voltage-dependences of on- and off-
rates of 1-AC are similar to those of 9-AC,
respectively. These suggest that 1-AC and 9-AC
block CFTR channel by binding to a common
binding site which should be modeled by a
combination of a positive charge tightly
surrounded by hydrophobic residues.
in 54t Biophysical Society (USA), at San
Francisco
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[Title]
Synergic effects of B-estradiol and erythromycin
on hERG currents

Fumiaki Ando, Akinori Kuruma, Seiko Kawano

[Abstract]

The incidences of long QT syndrome (LQTS) and
drug-induced Torsades de Pointes (TDPs) are
higher in women than men. Although gonadal
steroids are assumed to play an important role for
gender-based differences in cardiac
electrophysiological properties, the underlying
mechanisms by gender-based differences are not
fully understood. Especially, lx,, which composes
the repolarization phase of action potential, has
not been well understood in its modulation by sex
hormones. To asses this, we examined the effects
of female sex hormone, B-estradiol, on the human
ether-a-go-go-related gene  (hERG)-encoded
potassium current stably expressed in human
embryonic  kidney-293 (HEK) cells. We
demonstrated that hERG currents were inhibited
by B-estradiol maximally to 62 % of control with
an 1Cs of 1.3 uM and Hill coefficient of 0.87,
which might account for sex-related differences in
LQTS. We also examined whether estrogen
modulated drug-induced blocking effects on
hERG currents or not. With simultaneous
application of 10 uM erythromycin, which is
known to block hERG currents but not in low
doses, the blocking effects of p-estradiol on
hERG currents were enhanced. Namely, hERG
currents were inhibited maximally to 45.8 % of
control with an 1Cg, of 59 nM (P<0.02) by
B-estradiol with 10 pM erythromycin. We
conclude here that a significant block of hERG
currents by pB-estradiol may account for
sex-related differences in LQTS. And the synergic
effects of B-estradiol and erythromycin imply the
higher risk of drug-induced TDPs in women than
men.

Key words:
hERG current, p-estradiol, sex hormone, Iy,
patch clamp, erythromycin,

QT prolongation,

Gender-based differences are familiar in cardiac
electrophysiology, such as the rate-corrected QT
(QTc) intervals in normal cardiac repolarization,
the incidences of congenital long-QT syndrome
and drug-induced Torsades de Pointes (TDPs)
(Pham and Rosen 2002; Makkar et al, 1993;

Sanguinetti and Tristani-Firouzi 2006; James et al,
2007). Earlier studies suggest that the estrogen
receptor—mediated effects play a major role in the
gender-based differences in the incidence of
ventricular tachyarrhythmia after myocardial
infarction in humans (Cupples et al, 1992).
Female sex hormone, estrogen (B-estradiol), is
supposed to play an important role for the
expression and function of ion channels in cardiac
myocytes (Du et al, 2006; Saba et al, 2002). The
animal  experiments  prove that early
afterdepolarizations (EADs) induced by the I,
blocker, E4031, are more frequently induced in
17pB-estradiol-treated rabbits  than  with
5a-dihydrotestosterone treatment rabbits (Hara et
al, 1998). On the other hand, testosterone has
been reported to diminish the pro-arrhythmic
effects of dofetilide in female rabbits (Pham et al,
2002). Recent studies also indicate that
testosterone shortens APD by modulating both Iys
and I, in guinea pig hearts (Bai et al, 2005),
indicating that sex hormones affect ion channels
and modulate the repolarization phase of action
potentials. However, the precise mechanisms by
gender-based differences in cardiac
electrophysiology have not been fully understood.
Especially, lx,, which composes the repolarization
phase of action potential, has not been well
understood in its modulation by sex hormones
(Trepanier-Boulay et al, 2001, Kurokawa, et al
2008).

To prove this, we investigated whether
estrogen affected Ix, or modulated the
drug-induced blocking effects using human
embryonic  kidney-293 (HEK) cells stably
expressed hERG. We found that hERG currents
were significantly inhibited by 17p-estradiol in a
dose dependent manner and its blocking effects
were increased while co-application of low dose
of erhtyromycin.

Materials and Methods

Cell Preparation and Chemicals.

HEK-293 cells stably expressing hERG potassium
channels (gift from Dr. Craig T. January, (Zhou et
al, 1998) were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) containing 10 % fetal
bovine serum and antibiotics at 37 °C in a
humidified atmosphere of 95 % and 5 % CO,. On
the day of the experiment, cells were gently
dissociated by a pipette and stored at room
temperature.

Electrophysiology

Patch clamp experiments were performed as
reported previously (Kawano et al, 2003). Briefly,
using a patch clamp amplifier (Axopatch 2A and
pCLAMPS8, Axon Instruments, Foster City, CA,
USA), whole cell membrane currents were
recorded. Recording electrodes were made from



borosilicate glass, coated with Sylgard (Dow
Corning Corp., Midland, MI) and fire polished to
a resistance of 3-7 MQ, when filled with internal
pipette solutions. Data were stored on hard disk
digitized at 10 KHz and low-pass filtered at 1
KHz by a filter with Bessel characteristics (octave
attenuation, 48 dB) and analyzed off-line on a
computer (Dell VZ-6000, Epson, Tokyo, Japan).

All experiments were performed at temperature of

3545 C, which was maintained with a TC2

temperature controller (Cell Micro Controls,
Virginia Beach, VA). The input resistance and
membrane capacity were always checked at the
beginning and end of experiments. We have
omitted the data where the clamp was inadequate
and membrane resistance or capacity changed
during experiments.

hERG currents were recorded by applying step
pulses or ramp pulses. We usually started to
measure the currents at 5 minutes after
achievement of whole cell clamp mode because of
waiting the complete replacement of the internal
solution. In the series of experiments, hERG
currents decreased by about 22 % at 5 minutes
after starting the experiments. In pooled data, the
amplitudes of hERG currents became about
78 %x19 of control, n= 22, maen * SE). We
compensated the control values by the so called
natural run down rate (78%), in each experiment.
By using this value, we estimated the true effects
of drugs on hERG currents. All experiments were
analyzed by using this method in this study.

Solution and Drugs

For patch clamp experiments to record membrane
currents, we used HEPES buffer bath solution
containing (in mM) NaCl, 137; KCI, 4; CacCl,,
1.8; MgCl,, 1 and HEPES, 10. pH was adjusted to
7.4 with NaOH. Internal pipette solution contains
(in mM) KClI, 130; MgCl,, 1; EGTA, 5; MgATP, 5

and HEPES 10. pH was adjusted to 7.2 with KOH.

[-estradiol-water soluble (E4389),
(2-hydroxypropyl)-  B-cyclodextrin ~ solution
(H5784) and erythromycin were purchased from
Sigma-Aldrich  (St.  Louis, MOQ). Various
concentrations of B-estradiol such as 300 nM, 3
pM, 30 uM, 300 uM and 3 mM were used for
experiments. Erythromycin was dissolved to 10
uM. E-4031 was generously donated by Eisai,
Japan.

Statistics

The data are expressed as mean + S.D. or S.E. as
indicated in the text. Student’s paired t-test or
unpaired t-test was used to assess the statistical
significance. P-values of <0.05 was considered
significant.

Results

# 1, Effects of B-estradiol on hERG currents
We investigated the effects of B-estradiol on
hERG current, I, using the patch clamp methods.
hERG currents were elicited by repolarizing ramp
pulses (0.5 V/s) from -10 mV to -80 mV at 0.25
Hz, as reported previously (Wu et al 2003,
Hiramatsu et al 2004, Sasano et al, 2004). We
have confirmed hERG currents by the application
of E-4031 (data not shown). We examined the
Effects of B-estradiol on hERG currents. As
shown in Fig.1, with 300 nM B-estradiol, hERG
currents were slightly inhibited (Fig. 1a). When
the higher concentration of B-estradiol (30 puM)
was applied to the bath solution, the amplitudes of
tail currents were clearly inhibited (Fig. 1b).
Therefore, we examined the B-estradiol effects on
hERG currents at various membrane potentials.
The steady-state currents and tail currents were
recorded. A series of 4-second depolarizing pulses
were applied to voltages between -60 mV to +50
mV with 10 mV increments from -80 mV holding
potentials and then repolarized to -50 mV at 0.1
Hz. By the application of 30 uM B-estradiol,
hERG currents were blocked at almost all
membrane potentials (Fig. 2a, b). Next, we
studied the concentration-response relationships
of B-estradiol among 300 M, 3 uM, 30 uM, 300
uM and 3 mM. The results showed the higher
concentrations of P-estradiol, the stronger
blocking of hERG currents (Fig. 2c and d). By
analyzing the tail currents from the pooled data,
we concluded that hERG currents were inhibited
by B-estradiol maximally to 62 % of control in a
dose dependent manner (Fig. 2c). The value of
ICso was 1.3 uM and Hill coefficient was 0.87
(Fig.2d). Since it is reported that E2 is poorly
soluble in aqueous buffers (Himmel, 2007), we
tested whether cyclodextrin-encapsulated solution
affected hERG currents or not by using
(2-hydroxypropyl)- B-cyclodextrin solution. In
our experiments hERG currents were not
significantly affected by the application of 300
uM (2-hydroxypropyl)- B-cyclodextrin (data not
shown).

# 2, Blocking Properties of B-estradiol

The blocking properties of p-estradiol were
analyzed. As shown in Fig.3a, the amplitudes of
normalized tail currents in the presence of various
concentrations of B-estradiol (300 nM, 3 uM, 30
1M, 300 uM and 3 mM) were blocked in a dose
dependent manner, but not significantly different
depended on membrane potentials between -60
mV and +50 mV, indicating  the
voltage-independent block. The half maximally
activations and slope factors were analyzed. The
normalized tail currents were plotted as function
of voltages (Fig.3b) and data were fitted with a
Boltzmann function: I/lmax - 1/{1 - exp[(Vi: -



Vm)/S]}, where | represents the tail current, Vm is
the test membrane potential, Vy, is the
half-maximal activation voltage, and S is the
slope factor, which reflects the steepness of the
voltage dependence. The voltages of half
maximally activation and slope factors were not
significant different among these concentrations
of B-estradiol.

In addition, we evaluated whether these
blocking effects were use-dependent or not by
applying the continuous stimulations at 0.25 Hz.
In the presence of 30 uM B-estradiol, as shown in
Fig.3C, hERG currents elicited by the ramp pluses
(0.5 V/s) from -10 mV to -80 mV at 0.25 Hz were
gradually decreased Thus, the amplitude of hERG
current at 90th pulse was reduced to about 50 %
of control by the application of 30 uM B-estradiol,
(Fig. 3d). Without the continuous stimulations,
the reductions of hERG currents were 50 + 4 %
(n=7 cells) at 6 minutes after application of
B-estradiol, which is almost identical to those
with stimulations (Fig. 3d). From these results, we
concluded that blocking effects of B-estradiol
were use-independent.

# 3, Effects of p-estradiol and Erythromycin.

It is well known that several macrolides cause QT
prolongation and ventricular arrhythmias (Abriel
et al, 2004). Previous reports have shown that
hERG currents are inhibited by various
macrolides in a concentration-dependent manner
(Volberg et al, 2002). It is also suggested that
antibiotics induce ventricular tachycardia more
frequently in female than male (Coker 2008;
PharmD et al, 2008 ). Therefore, we hypothesized
that PB-estradiol might modulate the blocking
effects of macrolides on hERG currents. To test
this, we tested the combination effects of
erythromycin and B-estradiol together on hERG
currents. Since the low dose of B-estradiol or 10
uM erythromycin itself do not affect hERG
currents significantly (Fig.2) , we used 10 uM
erythromycin and various concentrations of
B-estradiol. We found that simultaneous
application of 10 uM erythromycin and 300 nM
B-estradiol markedly blocked hERG currents
(Fig.4b). In Fig. 4c, the hERG currents traces
were superimposed in the presence of 300 nM
B-estradiol and 10uM erythromycin. When both
drugs were applied simultaneously, hERG
currents were markedly blocked. In the presence
of 10 uM erythromycin, the amplitude of tail
current became to 65.5 + 9.4 % of control (Fig.
4a) and in the presence of 300 nM p-estradiol, it
became to 69.27 + 6.7 % of control, which was
not much different from those in the absence of
drugs (76.2 = 16.7 %). When both 10 puM
erythromycin and 300 nM B-estradiol were
applied together, hERG current were markedly

depressed to 45.8 + 9.8 % (Fig. 4d, e) (n=4~
7cells). These results clearly indicated that
simultaneous application of both B-estradiol and
erythromycin markedly enhanced the blocking
effects of each drug (Fig. 4e). Furthermore, the
examinations with various concentration of
B-estradiol in the presence of 10 uM erythromycin
showed a  concentration-dependent  block
(between 30 nM and 3 uM pB-estradiol, n=4~
7cells) (Fig. 4d).

The dose response curves were
compared between in the presence and absence of
erythromycin. In the presence of erythromycin,
the half blocking concentration was markedly
shifted to left. ICsowas 1.31 uM in the absence of
erythromycin and 59 nM in the presence of 10
uM erythromycin (Fig.5). The maximal inhibition
of B-estradiol was increased to 45.8 + 9.8 % (n=7
cells), in the presence of erythromycin. We
summarized these results in Fig.5¢c. Low dose of
erythromycin ( 10 uM) or low dose of B-estradiol
(300 nM) does not affect hERG currents, however,
both application these drugs simultaneously
significantly blocked hERG currents, indicating
the synergic effects.

Discussion

In the present study, we clearly demonstrated that
B-estradiol blocked hERG currents and this
blocking effect was enhanced with the
simultaneous application of erythromycin.

#1, Blocking effects of p-estradiol on hERG
currents

Sex steroid hormones are known to
regulate signaling pathways in cardiovasucular
system (Pham et al, 2002; Du et al, 2006). Gender
differences in electrophysiological properties
suggest that sex hormones may directly affect
membrane currents in heart, however, the precise
hormonal mechanisms is not fully understood
(Makkar et al, 1993 ; James et al, 2007; Coker
2008).

In electrophysiological studies, it has
been reported that estrogen prolongs the QT
interval and testosterone plays an important role
in a shortened QT interval (Pham et al, 2002;
Saba et al, 2002). The cellular examinations also
demonstrate that myocytes from females in mice
show a prolonged action potential repolarization
compared  with  myocytes from  males
(Trepanier-Boulay et al, 2001; Wu and Anderson
2002; Pham et al, 2002; Saba et al, 2002;
Brouillette et al, 2005;). Previously, it is reported
that testosterone regulate lxs and I, to contribute
to the QTCs interval (Bai et al, 2005).

Although hERG current is well known to
involve in the repolarization of the cardiac action
potential and contribute to QT intervals
(Sanguinetti and Mitcheson 2005; Sanguinetti and



Tristani-Firouzi 2006), the modulations of hERG
currents by sex hormones have not been fully
evaluated. It is reported that estradiol may
modulate E4031-induced prolongation of APD
and magnitude of early afterdepolarizations (Hara
et al, 1998). In isolated guinea pig ventricular
myocytes, 17p-estradiol prolongs APD mainly by
inhibiting the Ix components I, and s,
suggesting the blockage of hERG currents
(Tanabe et al, 1999). Recently it is reported that
physiological concentrations of E2 partially
suppressed 1(Kr) (Kurokawa et a, 2008). In this
study, we prove the inhibition of hERG currents
by p-estradiol using human embryonic
kidney-293 (HEK) cells expressed with hERG,
and also showed the synergic effects with
erythromycin, for the first time.

#2; p-estradiol modulates drug-induced and
erythromycin.

It is well recognized that many kinds of
drugs, not only antiarrhythmic drugs such as class
IA, IC and II, but also varieties of antibiotics,
neurotropic, antifungal and antimalarial durgs
block hERG channels and prolong the
repolarizing phase of the cardiac action potential
to lengthen the QT interval (Volberg et al, 2002;
Abriel et al, 2004; Finlaysona et al, 2004; Thomas
et al, 2004; Sanguinettil and Mitcheson 2005;
PharmD et al, 2008; Hancox et al, 2008). A recent
paper demonstrates that flavonoid compounds in
grapefruit juice block cardiac hERG channels and
may cause a prolongation of the QTc interval as a
consequence (Zitron et al, 2005). These findings
provide a rational basis for potential effects of
flavonoids on cardiac electrophysiology (Scholz
et al, 2005). Furthermore, the drug-induced LQTS
and the risk of TdP are more frequent in females
than males (Cupples et al, 1992; Lehmann et al,
1996; James et al, 2007; Coker 2008; PharmD et
al, 2008). It is unclear whether sex-based
differences in repolarization and responsiveness
to Ik blockers are due entirely to gonadal steroids
or are associated with other sex-related factor. In
the present study, we confirmed the synergic
effects of B-estradiol and erythromycin on hERG
currents with simultaneous application of both
drugs (Fig.4,5). Erythromycin is a widely used
antibiotic that infrequently causes
QT-prolongation and torsades de pointes cardiac
arrhythmias  (Nattel et al, 1990). For
antiarrhythmic drugs, it is reported that women
are at a higher risk for these cardiac arrhythmias
(Drici et al, 1998; PharmD et al, 2008). Our
evidences in the present study clearly proved the
underlying mechanisms in which erythromycin
causes a higher risk for TDPs in women.

#3; Clinical implications
Since many of Iy, blocking drugs induce

cardiac arrhythmias, it is very important to know
the modulation of ion channel function and how
this modulation influences the response to these
drugs. Our evidences in this study clarify one of
the mechanisms by gender-based differences in
cardiac  electrophysiology.  Therefore,  the
medication of drugs which block Iy, should be
paid greater attentions to women. It is reported
that sex-specific changes in drug transport and
metabolism will result in different plasma and
intracellular levels acting along a dose-response
effect on IKr block. Consequently, important
hormone-dependent factors such as metabolic
enzymes and membrane transporters need to be
investigated in new basic research studies.
(Hreiche et al,2008)

In this study we have not studied the
effects of progesterone or other hormones on
hERG currents. Furthermore, the underlying
molecular mechanisms of B-estradiol effects on
hERG currents have not clarified, yet. We need
the further studies.
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The effects of B-estradil on hERG currents.

Superimposed current traces in an experiment
with 300 nM (a) and 30 uM (b) B-estradiol. The
whole cell membrane currents were elicited by a 1
second depolarizing pulse to -10 mV from a
holding potential of -80 mV, followed by a
repolarizing ramp pulse (0/5V/s) to -80 mV.
Stimulations were applied at 0.25 Hz before and
after drug. Each current showed before (1) and 6
minutes after application of B-straddle (2).
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Figure 2

B- estradiol effects on the steady-state and tail
hERG currents.

Currents were recorded by applying a series of
4-second depolarizing pulses to voltages between
-60 mV to +50 mV with 10 mV increments from
-80 mV holding potentials and then repolarized to
-50 mV at 0.1 Hz. Currents in a and b show in
control and 6 minutes after application of 30 uM
B-estradiol, respectively. In c, the tail currents
were analyzed in the presence of various
concentrations of [-estradiol. Each symbol
indicates control m, 300 nM O, 3 uM A, 30 uM
VvV, 300 uM ¢ and 3 mM, respectively. The
data were normalized from 5-8 experiments in
each condition. In d, the dose response curve
showed that the value of 1Csy was 1.3 uM and
Hill coefficient was 0.87.
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Figure 3

The blocking properties of B-estradiol.

a, The peak late currents at various concentrations
of pB-estradiol were plotted. The data were
obtained from 5-8 experiments in each condition
and normalized to the control currents at +20 mV
test potential. At membrane potentials between
-60 mV and +50 mV, the blocking by B-estradiol
were not much different.

b, The voltage-dependent activations were
analyzed in the presence of various concentrations
of B-estradiol. Data were obtained by measuring
normalized tail currents at the voltage of +20 mV
and fitted with a Boltzmann function. The
voltages of half maximally activations and slope
factors were not significant different. Stimulations
were applied at 0.25 Hz before and after drug.
Each current showed before (1) and 6 minutes
after application of B-estradiol (2).

¢, The superimposed currents traces in the
presence of 30 uM p-estradiol. The 1 second
depolarizing pulse to -10 mV from a holding
potential of -80 mV, followed by a depolarizing
ramp pulse (0/5V/s) to -80 mV were applied at
0.25 hertz. The 1st trace indicates a control
current and the 90th current indicates one 6
minutes after application of B-estradiol.

d, The time courses of hERG currents were
plotted and compared with and without
continuous stimulations. In the presence of 300
nM B-estradiol (1) and 30 uMp-estradiol (2)
amplitudes of tail currents were plotted, while
applying ramp pulses at 0.25 Hz continuously.
Without applying the continuous pulses, the mean
amplitudes of tail currents were recorded at 6

minutes after the applications of 300
nM B-estradiol (A, triangle) and 30 uM (o,
square) (mean £ S.E, n=7 cells). Data in a, b, and
d were normalized.
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a, b, The superimposed hERG currents when 10
1M erythromycin was applied (a) and both 10 uM
erythromycin and 300 nM [-estradiol were
applied (b).

¢, d, The steady-state currents (c) and the tail
currents (d) were plotted in the presence of 10 uM
erythromycin, and various concentration of
B-estradiol. (1) Control (w), (2) 10 uM
erythromycin (o), (3) both 10 uM erythromycin
and 30 nM (A), (4) both 10 uM erythromycin
and 300 nM (V), and both (5) 10 uM
erythromycin and 3 puM B-estradiol (0) (mean
+S.E, n=7-8 cells).

Data in ¢ and d were normalized.
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a, Superimposed currents depolarized to +10 mV
test potential form -80 mV holding potentials in
control (1), at 6 minutes after application of 10
puM erythromycin (2), 3 uM B-estradiol (3), and
both 3 uM B-estradiol and 10 uM erythromycin
(4). The ordinate indicates relative currents
normalized by control ones.

b, Dose-response curves of [-estradiol in the
absence (-) and presence of 10 uM erythromycin
(+). Data were obtained by measuring normalized
tail currents at the voltage of +20 mV. The
apparent ICs, is 1.31 uM in the absence of
erythromycin and 59 nM in the presence of 10
uM erythromycin, respectively. The maximal
inhibition of estradiol is increased to 48 % from
38 % by the co-application of erythromycin.

¢, Summary of blocking effects of 10 uM
erythromycin or 3 uM pB-estradiol on hERG
currents measured by tail currents at +10 mV test
potential. Data were normalized by control tail
currents and indicated mea £ S.E. (n= 7 cells).
Significant  blocks were observed while
simultaneous application of both drugs. * P value
was < 0.02 (n= 7). All data were normalized.
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