科学研究費補助金研究成果報告書

平成23年 6月 7日現在

機関番号:13901 研究種目:若手研究(A) 研究期間:2008~2010 課題番号:20686063 研究課題名(和文) 酸化ウラン触媒と副生成物吸着剤を併用する放射性廃棄物の熱処理法の開発 研究課題名(英文)Development of thermal treatment of radioactive waste by uranium oxide catalyst and absorbent for byproducts 研究代表者: 澤田 佳代(SAWADA KAYO) 名古屋大学・エコトピア科学研究所・准教授 研究者番号:90372531

研究成果の概要(和文):

低レベル放射性廃棄物の熱処理によって発生する有害ガスとしてクロロベンゼンを対象とし てウラン触媒(八酸化三ウラン粉末)による分解を行った.ウラン触媒を用いることで活性化 エネルギーはおおよそ半減した。また,二酸化窒素が共存ガスとして存在することで分解率が 向上した.カルシウム吸着剤として水酸化カルシウムを添加した場合、分解率の向上がみられ た。さらに、シュウ酸を用いて模擬再生した試料を用いて225 でクロロベンゼンの分解を行 った結果、八酸化三ウランならびに水酸化カルシウムの混合粉末を用いた場合と同様の分解率 が得られた。

研究成果の概要(英文):

Catalytic decomposition employing uranium oxide, U_3O_8 , powder was carried out for chlorobenzene as one of the toxic gases generated from the thermal treatment of low level radioactive waste. The activation energy of the catalytic decomposition decreased to approximately half of that of the thermal decomposition. Coexistence of nitrogen dioxide with chlorobenzene increased the decomposition rate of chlorobenzene. Addition of calcium hydroxide as an absorbent also increased the conversion. The conversion obtained with the simulated catalyst regenerated with oxalic acid was almost same to that obtained with the mixed powder of uranium oxide and calcium hydroxide at 225 \cdot .

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	12,100,000	3,630,000	15,730,000
2009 年度	3,400,000	1,020,000	4,420,000
2010 年度	3,600,000	1,080,000	4,680,000
総計	19,100,000	5,730,000	24,830,000

研究分野:工学

科研費の分科・細目:総合工学・原子力学 キーワード:酸化ウラン、触媒、吸着剤、放射性廃棄物、熱処理法

1.研究開始当初の背景

原子力関連施設では,研究や設備のメンテナンス等の際に用いた紙,布,プラスチック, ゴム等の可燃性および難燃性の低レベル放射性廃棄物が排出される.これらは,通常,

種別毎に分けられ、ポリエチレンやポリ塩化 ビニルの袋に厳重に梱包された上、廃棄物容 器に詰め込められ、保管もしくは減容化施設 へ移動される、減容化施設では、これらの廃 棄物を開梱、再分別し、種別毎に適した処理

(焼却や溶融,圧縮処理等)によって減容化 する.比較的容易に大幅な減容化が図れる焼 却では,ポリ塩化ビニルがダイオキシン類等 の有害有機系ガス発生の要因となるため,高 温処理が必要とされる一方,高温では放射線 遮蔽のためにグローブやアクリル板の中に 加えられていた鉛が揮発するという問題を 抱えている.また,グローブには鉛以外にも 硫黄や亜鉛等の元素が含まれ , これらについ ても排ガス中に移行することが予想される. このような焼却の制限より,処理を行う焼却 炉に合わせた廃棄物分別が必要不可欠であ るものの,多くの施設では過去の廃棄物が梱 包保管されており,過去の遺物については分 別が十分である保証がないため,多くの場合, 人の手による分別が行われている.このよう な状況を鑑み,本研究では,可燃性・難燃性 廃棄物を一括熱処理し,有害物質を分解・除 去する方法を構築することを目的とする.

可燃性・難燃性廃棄物を一括熱処理した際 に発生する有害有機系ガスを分離する方法 として,ウラン触媒による分解に着目した. 英国の Hutching らの研究グループは,酸化 ウランが揮発性有機化合物 (VOCs)の分解 に酸化触媒として有効であることを示した. 彼らは,これまでに報告されている種々の触 媒による VOCs の分解結果と酸化ウランの性 能を比較しても遜色ない上に,貴金属系触媒 では阻害が起こる水蒸気存在下でも触媒活 性が失われないどころか反応率が向上する 場合があることをベンゼンやプロパンを対 象ガスとして示した.この酸化ウランの優れ た触媒性能に着目し,さらに分解によって生 成する塩化水素や硫黄酸化物を吸着・除去す るための副生成物吸着剤を反応場に存在さ せることで,より高効率な排ガス処理を行う。 吸着剤として水酸化カルシウムを用い , 副成 する塩化水素や硫黄酸化物を化学吸着し,反 応場からすることによって, VOCs の再合成 を妨げることで,反応温度のさらなる低温下 が可能であると期待される.本研究では,こ れらの知見を最大限活用し,化学吸着を併用 する新たな触媒反応系の提案,さらには新規 低レベル放射性廃棄物の減容化処理法の構 築を行うことを目的とする.

2.研究の目的

本研究では,低レベル放射性廃棄物の安全な 減容化のため,酸化ウラン触媒と副生成物吸 着剤を同時に用いた新たな熱処理プロセス を提案する.概念図を図1に示す.本処理プ ロセスでは,ポリ塩化ビニルやグロープ等を 含む可燃性・難燃性廃棄物を一括低温熱処理 し,発生する気体中の有害な有機系ガスおよ び低沸点金属を酸化ウラン触媒とカルシウ ム吸着剤によって低温分解・除去する.酸化 ウラン触媒とカルシウム吸着剤は,シュウ酸 を用いて再生し,繰り返し利用する.本研究 は,被爆の可能性がある分別作業,二次廃棄 物の発生を低減する低レベル放射性廃棄物 の減容化処理法の確立を目的とする.

図1 酸化ウラン触媒と副生成物吸着剤を 併用する放射性廃棄物の新たな熱処理プロ セス

3.研究の方法

(1)クロロベンゼンの分解実験 粒径 20~40 µmの八酸化三ウラン(U₃O₈) 0.1 gを内径 0.4 cmの石英製反応管に充填した. 管状炉内部に設置した反応管を加熱し,クロ ロベンゼンと酸素または二酸化窒素を含む アルゴンガスを流量 8.3 cm³ s⁻¹で流通した. 反応管出口ガスに含まれるクロロベンゼン の濃度をガスクロマトグラフフを用いて測 定した.クロロベンゼンの分解率を反応管入 口ガスと出口ガスに含まれるクロロベンゼ ンの濃度比から求めた.

(2)二酸化窒素と酸化ウランの反応実験 管状電気炉(アサヒ理化製作所株式会社製, ARF-30K)内部に設置した石英反応管に石英 ウールと粒径 20~40 μmの U₃O₈を0.4 g充 填した.装置内部をアルゴンガスで置換した 状態で,反応管を673 Kに加熱した後,NO₂ を含むアルゴンガスを100 cm³/min で流通さ せた.出口ガスの NO₂濃度をフーリエ変換赤 外分光光度計(日本分光株式会社製,

FT/IR-6100)で測定した.X線回折装置(理学 電機株式会社製, MiniFlex)を用いて反応後 の酸化ウランを分析した.

(3)カルシウム吸着剤を併用したクロロベン ゼンの触媒分解実験

上述の「3.1クロロベンゼンの分解実験」と 同様の実験装置を用いた。粒径20-45 µmに 分級した八酸化三ウラン(U₃O₈)および水酸化 カルシウムをそれぞれ0.1g秤取って混合し、 石英製反応管に充填した.クロロベンゼンと 酸素または二酸化窒素を含むアルゴンガス を流量3.3 cm³ s⁻¹で流通した.20分後の反応 管出口ガスに含まれるクロロベンゼンの濃度をガスクロマトグラフフを用いて測定した.クロロベンゼンの分解率を反応管入口ガスと出口ガスに含まれるクロロベンゼンの濃度比から求めた.

(4)再生触媒-吸収剤によるクロロベンゼン の分解実験

八酸化酸ウラン 0.2 gと水酸化カルシウム 0.2 gを混合した後、1 mol dm⁻³塩酸 0.5 cm³ を加えることで模擬試料を作製した。これを 1 mol dm⁻³シュウ酸水溶液 40 cm³と混合して 模擬試料中に含まれる塩化物イオンを除去 した後、固液分離を行って得られた試料をマ ッフル炉(ASONE 製, HPM-1G)を用いて 800 で焼成した。これに純水を加えて消化するこ とで再生した。得られた模擬再生試料の XRD 分析を行うとともに、「3.3 カルシウム吸着 剤を併用したクロロベンゼンの触媒分解実 験」と同様の手法で 225 におけるクロロベ ンゼンの分解率を求めた。

4.研究成果

(1)クロロベンゼンの触媒分解

図1にクロロベンゼンの分解率の温度依存 性を示す.実験から求めた分解率が0.01を 越えた場合を分解と定義すると,酸化ウラン を用いた場合,623 K以上でクロロベンゼン が分解し923 Kでは99%以上を分解できた. 酸化ウランを用いない場合の熱分解では, 923 Kより高い温度でクロロベンゼンが分解 した.酸化ウランを用いることで熱分解より 低い温度でクロロベンゼンを分解すること ができた.クロロベンゼンの分解の反応速度 r(moldm⁻³s⁻¹g⁻¹)を以下の式によって求めた.

$$r = \frac{u(C_0 - C)}{WV} \quad (1)$$

ここで *u* は流量(cm³ s⁻¹), *C*₀は反応管入口で のクロロベンゼンの濃度(mol dm⁻³), *W*は充填 した U₃0₈の重量(g), *V* は U₃0₈の充填層の体積 (cm³)である.クロロベンゼン分解の反応速度 式を以下のように仮定する

$$r = k[C_6H_5Cl]^m[O_2]^n$$
 (2)

ここで k は反応速度定数, m と n は反応次数 である.図2 にクロロベンゼン分解の反応速 度の濃度依存性を示す.図2の直線の傾きか ら m, nをそれぞれ1,0.1 と求め,反応速度 がクロロベンゼン濃度に依存し酸素濃度に ほとんど依存しないことがわかった.

図3にアレニウスプロットを示す.図3の傾 きより,酸化ウランを用いたクロロベンゼン の分解の活性化エネルギーは,78±12 kJ mol⁻¹, クロロベンゼンの熱分解の活性化エネ ルギーは 139 ± 11 kJ mol⁻¹と求めた.酸化ウ ランがクロロベンゼンの分解の触媒となり 活性化エネルギーが低下することが確認で きた.図4に酸化ウランを触媒として,酸化 剤に二酸化窒素を用いたクロロベンゼンの 分解率を示す.酸化ウランを触媒とした場合 でも , 二酸化窒素を用いることでクロロベン ゼン分解の反応速度が上がり,より低い温度 でクロロベンゼンを分解できることがわか った.酸素よりも二酸化窒素の方が,酸化ウ ラン触媒表面の反応に寄与する酸素を効率 的に補うことができると考えられた。

図2 反応速度の濃度依存性

(2)二酸化窒素と八酸化三ウランの反応 図5に反応管出口と入口の二酸化窒素濃度の 時間変化を示す.図5より,反応時間がある 程度経過すると,反応管出口濃度の時間変化 が反応管入口濃度と同じになり,それ以降は 二酸化窒素が分解しなかった.反応管入口濃 度の時間変化と反応管出口濃度の時間変化 で囲まれた部分の面積が分解した NO₂の総量 である.表1に反応管に充填した NO₂の総量 である.表1に反応管に充填した NO₂の総量 である.表1に反応管に充填した NO₂の総量 である.表1に反応管に充填した NO₂の総量 である.表1に反応管に充填した NO₂の の量を示す.Nずれの条件でも 反応管に充填した U₃O₈の量である 4.8×10⁻⁴ mol とほぼ等しくなった.図6に用いた酸化 ウランの反応前後の X 線回折の結果を示す. 反応後の酸化ウランの X 線回折の結果, UO₃ を示すピークが確認された.また,質量分析 によって NO が確認されたことから,次式の 反応によって NO₂が NO に分解されたと考えら れる.

 $NO_2 + U_3O_8 \quad 3UO_3 + NO \quad (3)$

表 1	NO2分解量と	U ₃ O ₈ 充填量の比
-----	---------	-------------------------------------

NO ₂ 濃度, vol%	NO ₂ 分解量, mol	NO ₂ 分解量と U ₃ 0 ₈ 量の比
1.0	4.5×10 ⁻⁴	0.94
0.5	4.1×10 ⁻⁴	0.92
0.25	4.6×10 ⁻⁴	0.97

図 7 に NO_2 の分解量の時間変化を示す.図 7 の傾きから NO_2 分解の反応速度を求めた結果, 反応管入口濃度が 0.25, 0.5, 1.0%のときそ れぞれ 1.6×10⁻⁸, 2.7×10⁻⁸, 5.7×10⁻⁸ mol/s⁻¹となった.図8に NO_2 分解の反応速度 の濃度依存性を示す NO_2 分解の反応速度式を (4)式のように仮定する.

$$r = k \left[\text{NO}_2 \right]^m \tag{4}$$

図 8 より, *m*=1 と求められ,673 K において は *k*=3.6×10⁻² となった.二酸化窒素による U₃O₈ の酸化の反応速度式は式(5)のようにな った.

$$r = 3.6 \times 10^{-2} [\text{NO}_2]$$
 (5)

(3)カルシウム吸着剤添加のクロロベンゼン の触媒分解に及ぼす効果

図9に水酸化カルシウムを添加した際のク ロロベンゼンの分解率を示す。水酸化カルシ ウムが共存することでクロロベンゼンの分 解率が向上することが分かった。

図 9 カルシウム吸着剤添加のクロロベンゼ ンの触媒分解に及ぼす効果

(4)ウランとカルシウムの再生・繰り返し利用 シュウ酸を用いて作製した模擬再生試料の XRD分析結果を図10に示す。八酸化三ウラン ならびに水酸化カルシウムの生成を確認し た。模擬再生した試料を用いて 225 でクロ ロベンゼンの分解を行った結果、分解率は 0.75 となり、八酸化三ウランならびに水酸化 カルシウムの混合粉末を用いた場合と同様 の分解率が得られた。これらの結果より、ウ ラン触媒とカルシウム吸着剤を併用するこ とで、クロロベンゼンを効果的に分解するこ とができ、さらにシュウ酸を用いて吸着剤を 再生できることが明らかとなった。

図 10 模擬再生試料の XRD パターン

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計0件)

[学会発表](計2件)
猪飼智治,<u>澤田佳代</u>,榎田洋一、二酸化窒素の酸化ウランを用いた分解、日本原子力学会中部支部第40回研究発表会、平成20年12月10日、名古屋大学 T. Ikai,<u>K. Sawada</u>,Y. Enokida、Decomposition of NO₂ and VOCs using uranium oxide、The R'09 Twin World Congress、Sep. 14-16, 2009、Nagoua, Japan
[図書](計0件)

〔産業財産権〕 出願状況(計0件)

取得状況(計0件)

〔その他〕特になし

6.研究組織

- (1)研究代表者
- 澤田佳代(SAWADA KAYO)

研究者番号:90372531

- (2)研究分担者 なし
- (3)連携研究者 なし