科学研究費補助金研究成果報告書

平成 22 年 3月 24 日現在

研究種目:若手研究(B) 研究期間:2008~2009 課題番号:20740140 研究課題名(和文) 宇宙塵水氷表面の水素形成反応過程

研究課題名(英文)

The formation of hydrogen molecules on the water ice surface

研究代表者

山内 貴志(YAMAUCHI TAKASHI) 九州工業大学・大学院工学研究院電気電子工学専攻・助教 研究者番号:70419620

研究成果の概要(和文):

本研究では、30~196Kの低温表面に水素ビームを入射することで、宇宙空間における水素分子 形成のメカニズムの解明を試みた。

1. 水氷基板の作成において、Ru上でアモルファス水氷を完全に結晶化させることが可能である ことが分かりました。またこの時の結晶化プロセスが1次元的な成長であることを報告しまし た。

2. 低温の金属Ru表面における水素引き抜き実験を行い、従来の報告と異なる、高い反応次数を示す挙動を得ました。私はこの結果に対し新たなモデルを提起し報告しました。

研究成果の概要(英文):

I studied a formation mechanism of interstellar hydrogen molecules by the abstraction of hydrogen adatoms by gaseous hydrogen atoms on a water ice surface at 30-196 K.

1. I found to be able to completely crystallize an amorphous water ice on a Ru surface, and reported on the one-dimensional nucleation and growth of the crystalline ice in the thin ice film.

2. I obtained the behavior with high reaction orders different from previous results by the experiment on the hydrogen abstraction, reported on a new model to this result.

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	2, 000, 000	600, 000	2, 600, 000
2009年度	1, 300, 000	390, 000	1, 690, 000
年度			
年度			
年度			
総計	3, 300, 000	990, 000	4, 290, 000

交付決定額

研究分野:数物系科学 科研費の分科・細目:物理学・宇宙物理 キーワード:宇宙科学、宇宙物理、水素、低温物性 1. 研究開始当初の背景

アモルファス水氷表面上の水素分子の形成に 関する理論的な研究は今までにいくつかなさ れてきていますが、

実験的には、VidaliやLuntz等により行われた 、表面に吸着残存する水素分子を間接的な手 法で検出する方法し

かなく、直接的に引き抜き反応の結果脱離す る水素分子のその場測定には至っていない。

2. 研究の目的

(1)水氷表面を作るための基板材Ru表面にお ける低温領域での水素引き抜き反応を調べ る。

(2)次に水分子が吸着したRu表面での水素引き抜き反応を調べる。

3. 研究の方法

(1)Ru 表面に D20 分子を吸着させ、D20 分子 膜を作製する。赤外分光法により測定しなが らこの表面を加熱し、D20 水氷の構造を調べ る。D20 分子膜の作成条件を決定し、D20 分 子の吸着した Ru 表面での水素引き抜き実験 を行い、生成脱離する HD 分子を QMS で捉え その反応プロセスを解析する。

(2)超高真空、極低温環境下でRu(001)表面にマイクロ波により解離させた重水素(D)原子を吸着させ、その表面に水素(H)原子を照射し、生成・脱離するHD分子及びD2分子を質量分析装置(QMS)で捉える。

4. 研究成果

星間水素分子の起源の研究は極低温水氷表 面にて吸着水素の気相水素による引き抜き反応 として企画している。この時、水氷は単結晶 Ru(0001)表面上に張る予定である。従って、先 ず Ru 基板表面に水氷の結晶を作製すべく、ア モルファス水氷からの水氷の結晶化について実 験を行った。

実験は AES、QMS、FT·IR、Ar+スパッタ銃、 クライオスタット、水素原子ビームチャンバーを 備えた UHV チャンバーで行った。ベース圧力は <1×10⁻⁸ Pa である。基板として Ru(0001)ウェハ ー(Ф10 mm、t=2 mm)を用いた。Ru 表面はス パッタ、アニール、酸化処理、フラッシングプロセ スを繰り返すことで清浄化した。基板は液体窒 素もしくは液体へリウムにより最高 100 Kまで冷 却された。それ以上の温度は電子衝撃加熱によ って達成し、基板温度は Ru エッジにスポット溶 接した K 熱電対により測定した。

水氷の結晶化水実験は、基板温度 84 K で 目的に量(約 30 ML)の水氷を Ru 基板に堆積 させた。水氷を堆積させた基板の温度を堆積 温度から測定温度まで昇温速度 0.2 K/s で線 形的にあげ、IRAS 測定、ITPD 測定を行っ た。

図1D₂OASWのCIへの変化過程での IRAS スペクトル

図1にD₂O水氷膜の結晶化過程のIRAS スペクトルを示す。IRAS スペクトルの時間 変化より、t = 0 では初期吸着した D₂O 水氷 薄膜が ASW であることがわかる。基板温度 Tを一定に保つと、時間の経過と共に ASW から CI ヘスペクトルが変化し、水氷薄膜の 結晶化が確認できた。結晶化後、IRAS スペ クトルの強度が徐々に減少している。これは CIの昇華に伴い水分子膜を形成する D₂O 分 子の OD 振動の成分が減少していくことを表 している。この IRAS スペクトルを ASW と CI 成分に分け、その比率から結晶化率 χ (= CI/(CI+ASW))を導出した。その時間変化を 図2に示す。結晶化の成長モードを知るため に、結晶化率の時間変化を Avrami 式で解析 した。

$$\chi = 100(1 - e^{(-k_A t)^n}) \qquad (1)$$

ここで kaは結晶化速度定数、nは成長の次元 を示すパラメータである。本実験の T=147-150 Kのどの温度でもn=1.82-1.96で あった。このことから、ASW から CI への成 長モードは 1 次元成長であると結論される。 この結果は、50 ML 程度の厚膜で水氷の結晶 化が3次元成長であると報告されていること とは異なり、今回測定した水氷薄膜の結晶化に おける最大の特徴である。水氷の結晶化に おいてランダム核生成する結晶核の平均距 離は 15 ML(50 Å)と見積もられているが、今 回の ASW 薄膜の厚さは多くの場合これより も薄い。従って、面内方向の核生成の速度が 成長速度よりも速いとき、膜厚方向の CI 成 長が律速となると考えた。

また、 k_A が温度と共に大きくなる。このこ とは結晶化プロセスが熱活性であることを 示す。そこで k_A のアレニウスプロットを行 い、ASW の結晶化の活性化エネルギー E_A を 計算すると $E_A = 1.01 \pm 0.05$ eV であった。今 回の結果から分かったランダム核生成の1次 元成長つまり n=2によって $k_A^2 = k_N \cdot k_G$ さら

には $2E_A = E_N + E_G を 導くことができる。こ$ こで、 広 は結晶核生成活性化エネルギーと EGは結晶核成長活性化エネルギーである。今 回の我々の実験では En と EGは求めていない が、Ru(001)での厚膜水氷における 3 次元成 長によると $E_{\rm N}$ = 1.56 eV、 $E_{\rm G}$ = 0.44 eV であ った。これらの値は Pt(111)における値と近 い。これらの $E_N \ge E_G$ の値と今回の実験で得 られた $E_A = 1.01 \pm 0.05 \text{ eV}$ を用いると $2E_A =$ **EN + EGの関係を満たしている。このことか** ら薄膜水氷の結晶化の成長モードは1次元成 長と厚膜水氷の3次元成長と異なっているが、 エネルギー的な観点から考えると薄膜水氷 の結晶化に伴う E_N と E_G は $2E_A = E_N + E_G$ の関係性より厚膜水氷の結晶化に伴うそれ とほぼ同じであることがわかった。

次に、水氷表面での水素反応に入る前に、 Ru(0001)表面の水素引き抜き反応を行うことに した。

水素引き抜き実験は111 Kの表面温度でD原 子を基板に 15 min 照射した後、基板温度を 30-222 Kの温度にし、H原子を15 min 基板に照 射し、生成した分子をQMSによって検出した。

基板表面に吸着している D 原子は、H 原子が 照射されることによって H+D_{ad}→HD、もしくは H+D_{ad}→D₂の反応で HD、D₂分子が生成された。 D 原子を吸着させた表面で引き抜きの際の基板 温度が 222、196、150、111 Kと低くなるにつれ、 D2 脱離速度曲線の立ち上がりは低くなり、100 K 以下では D2 分子の脱離は見られなかった。 この得られた引き抜き反応の脱離速度曲線を D 原子の被覆率 θ ρ の関数でフィッティングを行っ た。111 K で D 原子吸着させた表面では、111 K での HD 引き抜き曲線は $R_{HD}=2.5 \theta_{D}^{2}$ で合理的 にフィットできた。同様に、150 K では R_{HD}=2.2 θ $_{\rm D}^2$ +0.3 θ _D, 196 K \mathcal{C} it R_{HD}=2.2 θ _D²+0.4 θ _D \geq t った。これは、低温で吸着させた表面での HD 生 成反応に1次と2次の反応が混在していることを 示す。従来、Cu や Ni などの金属表面において HD 生成反応は1次反応であることが報告されて きたが、我々の結果はこれと異なっている。また、 D_2 の引き抜き反応に対しても、同様に θ_D に関し てフィッティングを行うと、2 次と3 次の反応が混 在していることが分かった。この反応においても、 D2の脱離は2次反応であることが Cu や Ni 表面 で報告されており、3 次反応が含まれていること を示した我々のRuの表面の結果はCuやNi金 属表面での結果と異なっている。

そこで、各反応機構に合わせ HD 分子及び D₂ 分子の脱離速度の式を組み直し、実験データの フィッティングを行った(図 3)。

$$R_{HD} = c_1 (1 + p_H / p_D(\theta_D^{-1} - 1)) + c_2 \theta_D^2 + \eta(t) \lfloor c_3 \theta_D^2 \theta_H \rfloor$$

$$R_{D_2} = k_1 \theta_D^2 + \eta(t) \left[k_2 \theta_D^3 + k_3 \theta_D^2 \theta_H \right]$$

この式では、HD 分子の脱離速度式は、第1項 が同位体効果を含んだ HA 機構、第2項は HC 機構、そして第3項はLH機構を示し、D2分 子の脱離速度式は第1項が HC 機構、第2項 が LH 機構を表している。この式によるフィ ッティングでHD及びD2分子の脱離速度曲線 を従来の結果よりもより良く再現できた。そ の結果から、HD 分子の脱離では同位体効果を 含めた HA 機構やLH 機構よりも、HC 機構が 主成分になっていることが分かった。D2分子 の脱離では脱離速度式で示した HC 機構によ る脱離は見られず、LH 機構のみが脱離に関わ っているという結果が得られた。LH 機構は表 面吸着 D 原子が脱離に伴い、D 原子が吸着し ていた場所に新たに H 原子が吸着するために、 LH 機構による脱離は D2 脱離の中でも D 原子 のみが吸着しているところからの脱離と H 原 子も吸着しているところからの脱離に分けら れる。このH原子が吸着しているところから の脱離は、当然 D₂だけでなく HD での脱離も

生じる。そのため HD 分子脱離でも LH 機構 が見られることが分かった。

図 4 各表面温度における Ru 表面上での HD,D₂ レートカーブ

110 K までの引き抜き実験では、D2 分子の脱 離に関しては温度依存性が収量や脱離ピーク に顕著に表れていた。しかし、HD 分子脱離に 関しては、脱離スペクトルの成分分解で温度依 存性が見られたが、ピーク強度や収量ではその 変化がわずかであった。フィッティングで HD 分 子脱離ではその主成分が同位体効果を含めた HA 機構成分ではなく、HC 機構であることを報 告した。しかし、未だ引き抜き反応において、 HA 機構に対する期待が強い。HA 機構の特徴 を考えると、この反応機構は表面温度依存性が 無い反応であると言われている。そこで、HD 分 子の脱離に関して、表面温度をより低温 (40-160 K)まで変化させその温度依存性を調 べた。図 4 に示すように吸着原子の引き抜き反 応で生じるHD 分子の脱離速度ピークは表面温 度の低下とともに小さくなっていることが分かる。 この脱離速度の温度依存性は特に100 K 以下 で顕著に現れている。このことから、やはり HD 分子の引き抜き反応は HC 機構によっており、 HA 機構による物ではないと考えられる。また、 吸着原子を D 原子から H 原子に変え、入射原 子を H 原子から D 原子に変え、同位体効果を 調べた(図 4)。この結果は D 原子吸着表面での 結果とほぼ同じであった。しかし、引き抜き反応 における活性化エネルギーを双方で求めたとこ ろ、H+D/Ru→HD では約 7meV、D+H/Ru→ HD では 14meV ということが分かり、吸着 D 原 子の H 原子による引き抜き反応の方における活 性化エネルギーが小さく、引き抜きやすいと言う ことが分かった。また、今回測定したこの活性化

エネルギーは非常に小さい。この活性化エネル ギーの理由として以下のように考えた。山内等 は Ru 表面における水素引き抜き反応におい て、脱離 HD 分子は HC 機構が主たる成分で あることを報告している。この機構では入射 水素原子は一旦 HC 状態になる。入射水素原 子がHC状態になるにはエネルギーをある程 度失う必要がある。そこに温度効果があると 考えられる。Nienhaous は入射ガスがエネル ギー損失を起こす可能性として、入射ガスが 表面に衝突することにより、 e-h(electron-hole) pair の生成、及び格子振 動励起があると報告している。今回実験で得 られた活性化エネルギーは 10 meV 前後であ り、それは表面温度 100 K のエネルギー kBT にほぼ等しい。この事実は、フェルミレベル より kBT 程度励起された自由電子は電子状 態密度などのために e-h pair の生成に有効で あると思われる。入射原子は金属表面で e-h pair をつくりエネルギーを失うことで、HC 状態になる。また、金属の phonon エネルギ ーはおおよそ 5~10 meV 程度であり、これ も今回実験で得られた活性化エネルギーと 同程度の値となる。入射原子が HC 状態にな るとき phonon 励起によって入射原子はエネ ルギーを失うと考えられる。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

- <u>T.Yamauchi</u>, K.Mine, Y.Nakashima, A.Izu mi and A.Namiki, Crystallization of D₂O thin films on Ru(001) surfaces, Applied Surface Science、査読有、Vol.**256**, 2009 、pp.1124-1127.
- ② <u>T.Yamauchi</u>, Y.Nakashima, T.Misumi, K.M ine and A.Namiki、D abstraction by H at a D-saturated Ru(001) surface、Surface Science、查読有、Vol.603、2009、pp.233 3-2339.

〔学会発表〕(計6件)

- K. Mine, Y. Nakashima, <u>T. Yamauchi</u> and A. Namiki 、 IRAS study on crystallization process of thin D₂O ice films on Ru(0001) surface、 4th Vacuum and Surf. Sci. Conf. of Asia and Australia、Oct. 28-31(2008)、くに びきメッセ
- <u>山内貴志</u>、中嶋泰成、嶺和幸、並木章、 反射吸収分光法(IRAS)による Ru(0001)表 面の D₂O 薄膜の結晶化観察、春期第 56 回応用物理学会、(2009 年 3 月)、筑波大 学

- ③ Y, Nakashima, K. Mine, <u>T. Yamauchi</u> and A. Namiki、D abstraction by H on the Ru(0001) surface、4th Vacuum and Surf. Sci. Conf. of Asia and Australia、Oct. 28-31(2008)、くに びきメッセ
- ④ 嶺 和幸、山内貴志、並木章、D/Ru(001) 表面における水素引き抜き反応への吸着 D₂O の効果、応用物理学会九州支部学術 講演会、(2009 年 11 月)、熊本大学
- ⑤ 山内貴志、嶺 和幸、並木章、D+D2O/Ru 共吸着表面からの水素引き抜き反応、第
 50 回真空に関する連合講演会(2009 年 11 月)、学習院創立百周年記念会館
- ⑥ 山内貴志、中嶋泰成、嶺和幸、並木章、 水氷表面での水素分子の形成と脱離、春 期天文学会、(2009 年 3 月)、大阪府立大学
- 6. 研究組織
- (1)研究代表者
- 山内 貴志 (YAMAUCHI TAKASHI) 九州工業大学・大学院工学研究院・助教 研究者番号: 70419620