様式 C-19

科学研究費補助金研究成果報告書

平成 22 年 5 月 25 日現在

oxides
oxides

研究成果の概要(和文):

強磁性相において励起されたスピン分極状態の時間・空間発展の観測および発展機構の解明 を行うために、時間分解顕微イメージ測定系の構築を行いました。現在、スピン分極状態をイ メージで測定するために必要となる、空間分解能と検出感度が得られた段階です。これから、 この方法を通じて、当初目標である Mn 酸化物のスピン分極伝播の検出に向けた実験を試みてい るところです。

研究成果の概要(英文):

I constructed a system for time-resolved imaging measurements to observe the time-space development of spin polarization and investigate the mechanism through microscope optics. Now I have reached the stage for successfully detecting spin polarization images with the necessary space resolution and sensitivity. From now on, I am trying the highly precise measurements through this method, aiming for the detection of the spin polarization spread in the Mn oxide as originally scheduled.

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	1, 400, 000	420, 000	1, 820, 000
2009年度	1, 600, 000	480, 000	2, 080, 000
年度			
年度			
年度			
総計	3, 000, 000	900, 000	3, 900, 000

研究分野: 凝縮系物理(強相関物性) 科研費の分科・細目: 物理学・物性 I キーワード: 光物性

1. 研究開始当初の背景

近年、超短パルスレーザーを光源に用いた ポンプ・プローブ法において、プローブ光ス ポットや試料を平面走査することにより、固 体中の素励起状態を可視化する研究が盛ん に行われるようになっています。例えば、音 響フォノンやポラリトンが二次元的に空間 発展する様子は、反射率の強度変調を得るこ とで観測されています (Y. Sugawara, et al., Phys. Rev. Lett. 88, 185504, 2002. / R. M. Koehl, et al., J. Phys. Chem., A103, 10260, 1999.)。磁性体におけるスピン分極 状態の空間発展に関しても、半導体 GaAs 中 で励起された伝導電子スピンの一次元的な 拡散(J. M. Kikkawa, et al., Nature 397, 139, 1999.)や、強磁性金属 Ni₈₁Fe₁₉や Co の薄膜に おける、磁化ベクトルの振動の様子(A. Barman, et al., Appl. Phys. Lett. 82, 3065, 2003. / Y. Acremann, et al., Science 290, 492, 2000.) などが、光 Kerr 効果を通じた同 様の方法で、観測されています。

これらの方法では、プローブ光スポットや 試料を平面走査するために、測定に時間が掛 かります。また、光源の強度揺らぎや試料お よび光学系の揺れから生じる、信号強度のド リフトや雑音の影響を受け易くなります。 我々は、これら従来の方法を改良し、拡大プ ローブ光と多チャンネルロックイン検出器 を用いるイメージングの手法により、高速か つ高感度に二次元像を取得できる時間分解 測定系を構築しています。この測定系により、 雑音を排した信頼あるデータの形で、スピン 分極状態の空間発展の可視化を試みます。ま た、多チャンネル高速 A/D 変換器を擬似 boxcar 検出器として利用する、もう一つのイ メージング方式の開発も行っています。

これまで多くの研究者が、時間分解分光測 定を通じて、ペロブスカイト型 Mn 酸化物 R_{0.6}Sr_{0.4}MnO₃(R:La, Pr, Nd, Sm)における光誘起 効果の研究を行ってきました。 $(Nd_{0.5}Sm_{0.5})_{0.6}Sr_{0.4}MnO_3$ では、光励起すると強 磁性相関が抑制されることが、松田らにより 示されています(K. Matsuda, et al., Phys. Rev. B 58, 4203, 1998.)。La_{0.6}Sr_{0.4}MnO₃にお いては、小笠原らにより、パルス光励起後の スピン分極状態の時間発展が詳細に調べら れています(T. Ogasawara, et al., Phys. Rev. B 68, 180407, 2003.)。我々は、特に後者の Kerr 回転角の測定結果に現れる構造に着目 しています。これは、150K で 100ps 程度の周 期を持つ、励起直後の振動的な応答であり、 この周期は顕著な温度依存性を示していま

す。これらの特異なスピン分極状態の変化の 詳細を、我々のイメージング手法による空間 発展の観測を通じて解明したいと考えてい ます。

2. 研究の目的

Mn酸化物La_{0.6}Sr_{0.4}Mn0₃の単結晶試料を作成 し、その磁気光学特性の測定および確認を行 います。その後、構築した高速・高感度な時 間分解イメージング測定法により、強磁性相 において励起されたスピン分極状態の時 間・空間発展の観測を行い、結果の考察を行 います。その後、希土類元素置換により、系 統的にスピン交換相互作用(J)を変化させた Mn酸化物 R_{0.6}Sr_{0.4}MnO₃(R:Pr,Nd,Sm)の単結晶 試料を作成します。これらの磁気光学特性の 測定と確認の後、強磁性相におけるスピン分 極状態の時間発展を観測し、そのJ依存性を 確認します。その後、スピン分極状態の空間 発展の観測を行い、その発展機構に関して考 察を行います。

3. 研究の方法

図 1:イメージング測定系概略図.

スピン分極状態の時間・空間発展の測定は、 チタンサファイアレーザーを光源とする、ポ ンプ・プローブ光学系で行います(図1)。 ここでは、Kerr 効果によるプローブ光の偏光 回転を通じ、スピン分極状態を検出します。 この測定系の特徴は、プローブ光をポンプ光 より大きなスポット径となるよう、ポンプ光 と同心状に試料上に集光し、その反射像全て を、1次元フォトダイオード検出器で平面的 に走査する点です。プローブ光スポット内の 各箇所での微小変化を、多チャンネル(32ch) 検出器(同期取り込み、ロックイン等)によ り同時検出することで、プローブ領域のスピ ン分極状態のイメージを高感度かつ高速に 取得できます(空間分解能~2µm、時間分解 能~200fs)。

測定に際しては、試料に対し永久磁石 (0.5T)で垂直磁界を与えます。そこに円偏光 したポンプ光を入れ、スピン選択励起するこ とで強磁性金属相におけるスピン分極状態 を生成させます。熱揺らぎを抑えるために、 クライオスタットで低温(~10K)にした状態 で、スピン分極状態の空間発展を、イメージ ング測定法により観測します。我々は既に、 作成したLa_{0.6}Sr_{0.4}MnO₃の単結晶試料において、 プローブ光スポットの反射強度の時間発展 を、室温下(300K)で観察しています。得られ たプローブ像の空間積分値の時間発展は、小 笠原らの報告(T. 0gasawara, et al., Phys. Rev. B 68, 180407, 2003.)と同等であるこ とが確認できています。

Mn酸化物 R_{0.6}Sr_{0.4}MnO₃(R:Pr, Nd, Sm) 試料は、 浮遊帯域溶融炉を用いて単結晶の形で作成 し、その表面を光学研磨します。この試料の 反射スペクトルは、FT-IR(赤外)および通常 光学系(可視-紫外)で、磁気光学スペクトル は、円偏光変調法を用いた光学系で測定しま す。これらの温度依存性を確認し、SQUIDに よる磁化特性の測定と併せて、定量解析のた めの基礎データとします。イメージング測定 系を構築し、改良してゆく際には、随時こう して作成された Mn酸化物 La_{0.6}Sr_{0.4}MnO₃ 試料 の測定を行いました。

4. 研究成果

本研究は、時間分解イメージング測定法を 用いて、強磁性相において励起されたスピン 分極状態の時間・空間発展の観測および発展 機構の解明を行うことを目的としています。 この測定では、超短パルスレーザーを光源と するポンプ・プローブ光学系で行い、Kerr 効 果によるプローブ光の偏光回転を通じ、スピ ン分極状態を検出することになります。スピ ン分極状態に基づいた Kerr 効果による偏光 回転は、Mn 酸化物等の磁性体の典型値で 0.001~0.01 度程度であり、これは 10⁻⁴~10⁻⁵ の強度変調を検出する感度を必要とします。 既存の0次元検出の場合には、これはプロー ブ光の縦横偏光成分をバランス検出するこ とで行っています。この検出をイメージング 手法で行うのが、本申請課題の核心部分とな ります。これまでの方法はイメージングには 使用できないので、まず初めに差分検出の方

法を採用しました。この方式の検出系を検証 するため、まず観測例のある他の素励起の空 間伝播の可視化を行いました。ここでは、強 誘電体 LiTaOa 上の分極波を測定対象として 選択しています。実験においては、ポンプ光 パルスを1つおきに間引き、各場合のプロー ブ光の強度変化の差分を取り出しています。 その結果、試料表面上に過渡的な分極状態を 作り出し、その分極状態の波束が、励起後に 光速の 15%の速度で同心円状に拡大してゆく 様子が明確に観測されました。これは、文献" J. Phys. Chem. A 103, 10260 (1999)"で示 された同物質における実験結果を、本手法を 用いながら正確に再現しています。また、透 過(反射)率変化としてΔT(ΔR)~0.001 程度の変化まで検出できる感度特性を持つ ことが確認できました(図2)。

図2:ポラリトン伝播の二次元イメージ.

但し結果として、このポンプ光の有無の差 分で変調を検出する方法では、Kerr 回転の変 化量 10⁻⁴~10⁻⁵をイメージングできる精度は 得られませんでした。実際、Mn 酸化物で測定 を行いましたが、変調の大きさが測定系の S/N と同程度であることから、スピン分極の 伝播には至りませんでした。また、補完手段 としてマルチチャンネルロックイン検出系 での測定も行いましたが、検出系のダイナミ ックレンジ、および応答速度と時定数の制限 等から、同様の結果となりました。

現在は、引き続き測定系の改良を行ってい る段階です。量子化に優れたデジタイザと高 繰り返し(76MHz)のチタンサファイアレーザ 一発振器、および高倍率(X20)の対物顕微鏡 を使用することで、空間分解能で0.4µm/ch、 10⁻⁴の大きさの反射率変調まで安定して検出 できるイメージング性能が出せています(図 3)。これはロックインアンプによる検出水 準に匹敵し、顕微イメージング手法による空 間分解能と併せて、本件の差分検出法の極値 を出せています。また同時に、同期取り込み の多チャンネル検出器と高繰り返しレーザ 一発振器、および光弾性変調器を用いた、偏 光回転のイメージング測定系の検証も行っており、ここでは変調で2x10⁻⁵の検出感度が得られることを試験的に確認しています。他にも、サニャック干渉光学系を適用する方法も検討中です。

図3:高繰り返しの測定系で得られた、InP の励起スポット位置での過渡反射率変調.

これらの方法を採用し、何れかが感度の間 題を解消できれば、希土類置換した一連の Mn 酸化物 R_{0.6}Sr_{0.4}MnO₃(R:Pr, Nd, Sm)の単結晶試 料の作成を予定通りに行い、各々の磁気光学 スペクトルを、円偏光変調法を用いた光学系 で測定する予定です。そこでは、これらの温 度依存性を確認し、SQUID による磁化特性の 測定と併せて、定量解析のための基礎データ とします。そして最初に、プローブ光スポッ トの空間積分値の形で、各々のスピン分極状 態の時間発展を測定し、これらの結果と交換 相互作用の大きさ(J)の関係を明らかにし ます。次いで空間発展を見るイメージングの 測定を行い、これらの結果から、スピン分極 状態の時間・空間発展の機構について考察し ます。また、スピン分極状態の時間・空間発 展の温度依存性や外部磁場依存性も測定し、 スピン分極の振る舞いを温度-磁場相図上 で明らかにする予定です。以上のように、当 初目標である Mn 酸化物のスピン分極伝播の 検出を引き続き目指して行きます。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計3件)
 ①上岡隼人、守友浩、フェムト秒時間分解イメージ測定用の小型顕微鏡筒の開発(No.31)
 第4回ポリスケールテクノロジーワークショップ、2010年3月5日、東京理科大学カナル会館3階大会議室

②上岡隼人,中田文也,五十嵐 一泰,守友 浩、価数制御された Co-Fe シアノ錯体膜のフ ェムト秒分光(27aVD-1)、日本物理学会第 64 回年次大会、2009年3月27日、立教大学

③上岡隼人,中田文也,守友浩,高坂亘,大 越慎一、M-Feシアノ錯体(M=Mn, Fe, Co)にお ける過渡吸収スペクトルの観測(21aYD-4)、 日本物理学会 2008 年秋季大会、2008 年 9 月 21 日、岩手大学

〔産業財産権〕
○出願状況(計1件)
名称:ポンプ・プローブ型の測定装置
発明者:守友浩、上岡隼人
権利者:国立大学法人筑波大学
種類:特願
番号:2009-052199
出願年月日:平成21年3月5日
国内外の別:国内

〔その他〕 ホームページ等

本申請の研究内容を取り入れて行われた、 多チャンネル同時計測器によって高速取り 込み可能な、高精度過渡吸収スペクトル測定 系の開発が、日本ナショナルインスツルメン ツ株式会社の中に記載されています。 http://sine.ni.com/cs/app/doc/p/id/cs-1 2595

6.研究組織
(1)研究代表者
上岡 隼人(KAMIOKA HAYATO)
筑波大学・大学院数理物質科学研究科・助教研究者番号:40431671