科学研究費補助金研究成果報告書

平成 22 年 5 月 29 日現在

研究種目:若手研究(B) 研究期間:2008~2009 課題番号:20760073 研究課題名(和文) 統計学を利用した電子後方散乱回折による疲労損傷の定量評価システム の構築 研究課題名(英文) Establishment of quantitative evaluation systems of fatigue damage by electron backscatter diffraction using statistics 研究代表者 黒田 雅利(KURODA MASATOSHI) 熊本大学・大学院自然科学研究科・准教授 研究者番号:00432998

研究成果の概要(和文):電子後方散乱回折を用いて塑性ひずみを検出する試みに関しては、こ れまで様々な評価パラメータが提案されている。しかしながら、どのパラメータが最適である かについて詳細に検討した研究例はほとんど見当たらないようである。また、電子後方散乱回 折を利用した疲労損傷評価に関する研究は、まだ報告例が数少ないのが現状である。そこで本 研究では、様々な統計的手法を導入することにより疲労損傷度を定量的に評価することが可能 となる手法を考案し、その手法の妥当性について従来までに提案されている評価パラメータと 比較の上検討を行った。

研究成果の概要(英文):So far, several types of the parameters have been proposed to detect plastic strains by electron backscatter diffraction (EBSD). However, there is little information on the most suitable parameters through the detailed discussion. There is also limited information on the evaluation of fatigue damage by EBSD. In the present study, the procedures which enable to evaluate fatigue damage quantitatively have been suggested by introducing statistical approaches. The applicability of the procedures has also been discussed by comparing the parameters formerly proposed.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	2,100,000	630,000	2,730,000
2009 年度	1,200,000	360,000	1,560,000
年度			
年度			
年度			
総計	3,300,000	990,000	4,290,000

研究分野:材料強度学

科研費の分科・細目:機械工学 機械材料・材料力学 キーワード:疲労 原子力材料 電子後方散乱回折

1.研究開始当初の背景

近年、国内で原子力発電プラントの新規立 地が困難であること、および経済性などの理 由から、通常 30~40 年とされている現在稼 働中の軽水炉の寿命を延長させるための研 究活動が精力的に行われている⁽¹⁾。軽水炉の 供用期間延長のためには、構造物の疲労損傷 や経年劣化の状態を精度良く評価すること が求められる。

電子後方散乱回折(electron backscatter

diffraction、以後 EBSD)は、走査型電子顕微 鏡内において試料表面に電子線を照射する ことにより生じる電子線回折で、その回折パ ターンから試料表面の結晶方位や結晶構造 を同定することができる⁽²⁾。EBSD 法を用いる ことで、材料内部に導入される転位により引 き起こされる結晶方位の変化を捉えること が可能である。近年、EBSD 装置を利用して材 料の局所的な塑性ひずみを検出する試みが 精力的に行われている。例えばこれまで塑性 ひずみを定量化するパラメータとして、結晶 変形量、修正結晶変形量、局所方位差平均の 3 つのパラメータが考案され、その有効性が 報告されている⁽³⁻⁵⁾。

これらのパラメータ算出のためのデータ 処理は、市販のソフトウェアでは対応できな いため、C 言語を利用したプログラムが用い られている。しかしながら、そのプログラム は複雑でかつユーザーフレンドリーではな いため、汎用性を高めるためには容易にこれ らのパラメータを算出できることが望まし い。また、EBSD 法を利用した疲労損傷評価に 関する研究例は、まだ数少ないのが現状であ る。さらに、疲労損傷評価にはどのようなパ ラメータが最適であるかについて検討した 研究例はほとんど見当たらないようである。

2.研究の目的

そこで本研究では、まずC言語で作成され た複雑な EBSD 解析プログラムの汎用性を高 めるために、Microsoft Visual C++ を用い て独自に Graphical User Interface (GUI) を作成することで、その解析プログラムのイ ンターフェース化を行った。また疲労損傷を 定量的に評価することが可能となる新たな パラメータを考案し、そのパラメータの適用 性について、これまで考案されてきたパラメ ータと比較の上検討を行った。

3.研究の方法

(1)供試材および疲労試験

供試材は表1に示す化学成分を有する市販のオーステナイト系ステンレス鋼(SUS316)を用いた。その機械的性質を表2に示す。その棒材を図1に示すASTMに準拠した形状・ 寸法⁽⁶⁾に機械加工後、疲労試験を行った。

疲労試験は、油圧制御引張圧縮疲労試験機 を用いて全ひずみ幅($\Delta \varepsilon_t$)制御で行った。ま ず $\Delta \varepsilon_t=0.01$ 、0.012、0.014、0.016、0.02、0.03 の6条件の下で破断試験を行った。ここで破 断寿命は、引張側荷重値が最大値あるいは定 常値の 3/4 に低下した繰り返し数と定義した (⁷⁷。次に、 $\Delta \varepsilon_t=0.01$ 、0.02、0.03 の3条件に おいて、それぞれ破断寿命の 10%、50%、80% 程度のサイクル数後に疲労試験を中断する 途中止め試験を行った。 表1 化学成分

表 2 機械的性質

図1 試験片形状

(2) EBSD 測定

疲労試験後、各試験片平行部の中央部近傍 の横断面をワイヤ放電加工機により切り出 して樹脂埋めを施した。その樹脂埋めされた サンプルに対して、シリコンカーバイド研磨 紙(#320~#1200)および2種類のダイヤモン ド研磨剤(9μm、3μm)による研磨を行った。さ らに、コロイダルシリカ(0.04μm)を用いた最 終研磨を施し鏡面状に仕上げた。

結晶方位の測定には、電界放射型走査電子 顕微鏡に結晶方位測定装置ならびに解析ツ ールが組み込まれた SEM-EBSD システムを利 用した。加速電圧は 20keV で、測定時のステ ップサイズは 0.5µm とした。

(3) EBSD 解析プログラムと GUI 作成

EBSD 解析プログラムにより算出可能な既存のパラメータは結晶変形量、修正結晶変形 量、局所方位差平均の3つである⁽³⁻⁵⁾。本研究では、そのプログラムのインターフェース 化を目的として、Microsoft Visual C++ 2008 を用いて高度なプログラミング技術が不要 となる Graphical User Interface (GUI)を試 作した。

(4) EBSD パラメータ

粒界結晶変形量

本研究では、粒界結晶変形量 BC_aとして以下のパラメータを考案した。

$$BC_{d} = \frac{\sum_{k=1}^{n_{g}} \left[\sum_{b=1}^{n_{b}} \beta(p_{k}, b) \right]}{\sum_{b=1}^{n_{g}} n_{b}}$$
(1)

ここで、 n_g は測定範囲に含まれる結晶粒の総数、 n_b は同じ結晶粒 kに属する結晶粒界に面するデータ点数、 ρ_k は結晶粒 kの中心方位、

β(*p_k*, *b*)は中心方位と同じ結晶粒内で結晶粒 界に面するデータ点 *b*の方位との方位差を示 す。本研究では、結晶粒界に面するデータ点 は、図 2(a)に示すように隣り合うデータ点の 方位差が 5°以上となるデータ点と定義した。 すべてのデータに対して結晶粒界に面する データ点を定義後、図 2(b)に示すようにそれ ぞれの結晶粒界に面するデータ点と中心方 位との方位差を求めその平均をとることで、 粒界結晶変形量を算出した。

結晶粒サイズ

測定範囲内で結晶粒と定義されたすべて の結晶粒の面積の総和 *S*は、その面積に対応 するピクセルの総和 *Pg*を用いて以下の式に より求められる。

$$S = P_o \times S_u \tag{2}$$

ここで、 S_{μ} は単一ピクセル面積である。本研 究では、EBSD 測定のステップ間隔は 0.5 μ m で あることから、単一ピクセル面積 S_{μ} は 0.25 μ m²となる。平均結晶粒面積 S_{μ} は次式で 求められる。

$$S_A = S/N_{g} \tag{3}$$

ここで、 N_g は測定範囲内で結晶粒と定義された結晶粒の総数に相当する。円相当径 d は、平均結晶粒面積 S_A を用いて最終的に以下の式で表される⁽⁸⁾。

$$d = \sqrt{\frac{4}{\pi}S_A} \tag{4}$$

本研究では dを結晶粒サイズと定義した。結 晶粒サイズ算出のための概念図を図3に示す。

4 . 研究成果

(1)疲労寿命曲線

図4にΔε,=0.01、0.012、0.014、0.016、0.02、 0.03の6条件の下での疲労試験結果を示す。 同図より全ひずみ幅と破断寿命との関係は、 両対数グラフ上において直線で表されるこ とが分かる。

(2)GUI機能を有する EBSD 解析プログラム 今回作成した GUI機能(起動時に立ち上が るフォームおよび解析結果の表)を図5に、 解析結果が出力されるまでの手順を図6のフ ローチャートにそれぞれ示す。また、本解析 プログラムを実行することにより出力され る結晶方位分布図の例を図7に示す。基本的 な操作手順としては、図5のフォーム上で左 から右にクリックすることで、ファイルの選 択、初期設定値の指定、解析、結果の出力が 可能である。本研究において作成した GUI機 能により、EBSD 解析プログラムが簡単に実行 できるようになった。

000	208	0407E	5+9T	NO.0000 1	5500255		
	Column1	Column2	Galunn3	Column4	Column8	Columnő	Golumn7
•	tile name	Nunccycle	Nun point	Num_grain	Cd	MCD	Mave
	LOF15_Sane	0.25	160539	207	0.491255	0.432097	0.191105
	LOF15_10.ane	27	160238	250	0.933223	0.908551	0.318612
	LCF15_50.ang	135	159138	219	2.515265	2.183571	0.512888
	LCF15_80.ang	168	156743	204	2.670829	2.302765	0.547479
*	LCF15,100,5 ang	204	156324	253	2.921538	2.553717	0.648595

図 5 GUI 機能の例

図6 解析結果出力までのフローチャート

図7 結晶方位分布図の出力例

(3)従来の EBSD パラメータによる疲労損傷評価

図 8 に EBSD 解析プログラムによって得られた結晶変形量、修正結晶変形量、局所方位 差平均と疲労サイクル数比との関係を示す。 同図より、 ε_i=0.02、0.03 では疲労サイク ル数比の増加に伴い、結晶変形量、修正結晶 変形量、局所方位差平均がともに単調に増加 していることがわかる。従ってこれら3つの パラメータは、比較的高応力下での疲労損傷 評価に対して有効であると考えられる。

図8 各EBSDパラメータによる疲労損傷評価

(4)新たな EBSD パラメータによる疲労損 傷評価

粒界結晶変形量

図9に全ひずみ幅 *ε*_F=0.01、0.02、0.03 における疲労サイクル数比と粒界結晶変形 量との関係を示す。同図より、疲労サイクル 数比の増加に伴い、粒界結晶変形量が単調に 増加する傾向が見受けられる。今後、この粒 界結晶変形量が、比較的低応力下での疲労損 傷評価に対して有効であるかについて、さら に詳細な検討が必要であると考えられる。

図 9 疲労サイクル数比の増加に伴う粒界結 晶変形量の変化

結晶粒サイズ

図 10 に全ひずみ幅 $\varepsilon_r=0.01$, 0.02, 0.03 における疲労サイクル数比と結晶粒サイズ の逆数との関係を示す。同図より結晶粒サイ ズの逆数と疲労サイクル数比との間には、比 較的良好な相関関係が認められることが分 かる。今後、様々な疲労データに対する結晶 粒サイズのパラメータの有効性について、さ らに詳細な検討が必要であると考えられる。

(参考文献)

(1)Kuroda M., Yamanaka S., Yamada K., Isobe Y., Detection of plastic deformation and fatigue damage in pressure vessel steel by leakage magnetic flux sensors, Materials Science Research International, 7 (2001) 213-218.

- (2)Humphreys F.J., Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD), Scripta Materialia, 51 (2004) 771-776.
- (3)Kamaya M., Wilkinson A.J., Titchmarsh J.M., Measurement of plastic strain of polycrystalline material by electron backscatter diffraction, Nuclear Engineering and Design 235 (2005) 713-725.
- (4)Kamaya M., Wilkinson A.J., Titchmarsh J.M., Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction, Acta Materialia, 54 (2006) 539-548.
- (5)Kamaya M., Measurement of local plastic strain distribution of stainless steel by electron backscatter diffration, Materials Characterization, 60 (2009) 125-132.
- (6)ASTM Designation E606-80 (1980).
- (7)日本材料学会,委員会報告,材料,24-258 (1975)254.
- (8)Kangwantrakool S., Golman B., Shinohara K., Journal of Chemical Engineering of Japan, 36 (2003) 49-56.
- 5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計4件)

森貴之、久保健太郎、山田輝明、釜谷昌幸、 <u>黒田雅利</u>、森和也、ステンレス鋼の結晶方位 解析プログラムの開発() - ビジュアル C による GUIの試作 - 、日本機械学会九州支部 第 63 期総会・講演会、2010 年 3 月 15 日、 熊本大学工学部

釜谷昌幸、森貴之、山田輝明、<u>黒田雅利</u>、 森和也、ステンレス鋼の結晶方位解析プログ ラムの開発()・ 結晶粒サイズに着目した 疲労損傷評価 - 、日本機械学会九州支部第 63 期総会・講演会、2010 年 3 月 15 日、熊本大 学工学部

山田輝明、釜谷昌幸、<u>黒田雅利</u>、保田健、 台場拓也、今村康博、森和也、電子後方散乱 回折による 316 系ステンレス鋼の低サイク ル疲労損傷評価、日本機械学会 M&M2008 材料 力学カンファレンス、2008 年 9 月 16 日~18 日、立命館大学びわこ・くさつキャンパス

森貴之、柴田隼平、釜谷昌幸、<u>黒田雅利</u>、 森和也、電子後方散乱回折法による疲労損傷 検出のための最適結晶パラメータの検討、日 本機械学会 M&M2008 材料力学カンファレン ス、2008 年 9 月 16 日 ~ 18 日、立命館大学び わこ・くさつキャンパス

- 6.研究組織
- (1)研究代表者
 - 黒田 雅利(KURODA MASATOSHI)熊本大学・大学院自然科学研究科・准教授研究者番号:00432998