科学研究費補助金研究成果報告書

平成22年6月25日現在

研究種目:若手研究(B) 研究期間:2008~2009 課題番号:20760508 研究課題名(和文) 材料組織制御による高温作動型形状記憶セラミック材料の開発

研究課題名(英文) Development of high temperature shape memory ceramic by microstructure control

研究代表者

井 誠一郎 (SEIICHIRO II)
 独立行政法人物質・材料研究機構・ハイブリッド材料センター・主任研究員
 研究者番号:60435146

研究成果の概要(和文):

大気中で利用可能な高温型形状記憶材料の開発を目的として,1000℃近傍でマルテンサイト変態を起こすジルコニアに着目し,純ジルコニア微粒子の微細構造を評価するとともに, 衝撃超高圧を利用した固化成形を試みた.X線回折や透過型電子顕微鏡により出発材料で ある純ジルコニア粉末を調査したところ,単斜晶単相である粉末は,その粒子径が約50nm であることおよび粉末内部がマルテンサイトの典型的な組織である双晶で構成されている ことを明らかにすることが出来た.また,その粉末を衝撃圧縮試験に供したところ,部分 的ではあるものの固化成形に成功した.

研究成果の概要(英文):

In order to develop shape memory materials working at high temperature in air, the microstructure of nano particle of pure zirconia and shock consolidation have been investigated. The average diameter of the raw pure zirconia nanoparticle used in this study is approximately 50nm and the microstructure consisted of fully monoclinic phase. In those nano particles, the (100) compound twins have also observed. Additionally, partly consolidation of pure zirconia has been succeeded by shock compaction.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2008年度	1, 900, 000	570, 000	2, 470, 000
2009年度	1, 400, 000	420, 000	1, 820, 000
年度			
年度			
年度			
総計	3, 300, 000	990, 000	4, 290, 000

研究分野:材料組織学,電子顕微鏡学

科研費の分科・細目:材料工学・金属生産工学

キーワード:ジルコニア,マルテンサイト変態,結晶粒界,双晶,異相界面,透過型電子顕微 鏡,衝撃固化成形

1. 研究開始当初の背景

純粋なジルコニア(ZrO2)は、融点からの温度 低下に伴い約 2650K で立方晶(c)相から正方 晶(t)相へ,また約1450Kでt相から単斜晶(m) 相へ相変態を起こす. 各々の相は優れた強度 特性のみならずイオン電導性を示すなど、実 用材料としてのポテンシャルが非常に高い 材料であり,これまで数多くの研究成果が報 告されている. 特に種々の希土類酸化物を添 加することによって、上述の変態点を低下さ せながら中間相である t 相を室温で安定化さ せた正方晶ジルコニア多結晶体(TZP)や c 相 を安定化させた完全安定化ジルコニア(FSZ), あるいはその2相を利用した部分安定化ジル コニア(PSZ)に関する研究が、ZrO2における 研究の大部分を占めている. そのうち機械的 特性に関する研究は, 1970 年代に PSZ の変 態強化による論文(Garvie et al., Nature(1975)) が公表されて以来, 主として機械的特性に関 して国内外を問わず活発な研究が行われて いる.加えて,TZP は微細粉末を原料とする ことで高強度・高靱性等優れた機械的特性が 得られることのみならず,イットリア(Y₂O₃) で安定化させた TZP(Y-TZP)が超塑性特性を 有することが報告されており(Wakai et al. Adv. Ceram. Mater., (1986)), 現在も活発な研究が行 われている.中でも東京大学のグループは, SiO₂を微量添加した Y-TZP において約 1000% と記録的な延性を見いだし報告している (Kajihara et al., Acta Metall. Mater., (1995)). 加 えて, 上記材料を高分解能透過型電子顕微鏡 (HRTEM)観察およびナノプローブエネルギ 一分散分光法(EDX)分析に供したところ,Si が結晶粒界近傍数 nm の範囲に偏析すること を明らかにし(Ikuhara et al., Acta Mater, (1997)), 粒界に偏析した Si が共有結合性を向 上させ,結晶粒界の強化に寄与していること が第一原理計算より明らかとなっている (Kuwabara et al., Mater. Sci. Forum., (2001)). ま た, FSZ に関しては, c 相が有するイオン電 導性を利用して燃料電池や酸素センサー等 として実用材料としての開発が精力的に行 われている. このように, t 相や c 相を安定 化させた ZrO, は多様かつ優れた特性を有す ることから広く実用に供されているが, m相 を主成分とした多結晶 ZrO2 を対象とした研 究は現状でほとんど報告されていない. これ は, ZrO₂における t 相から m 相への相変態 はマルテンサイト変態であることが知られ ており、マルテンサイト変態時に約4%の体 積変化が生じることから,多結晶体を t-m 変 態温度で挟んだ温度域から冷却すると粒界 破壊が生じ、健全なバルク体の作製が非常に 困難であることに起因すると考えられる.実 際,粉末冶金学的手法による m 相を主成分と する ZrO,バルク体の固化成形に関しては,熱 間静水圧プレス(HIP)を利用した焼結による

純 ZrO₂の固化成形およびそのバルク体の高 温変形に関する研究 (Yoshida et al., J. Am. Ceram. Soc., (2002) and Key Eng. Mater., (2006)),高圧合成を利用した固化成形および バルク体の強度特性に関する研究 (高岡ら, 材料(2006)), HIP 利用による固化成形とその バルク体の破壊挙動に関する研究 (Eichler et al., J. Am. Ceram. Soc., (2004)) が報告されて いる程度であり, TZP や FSZ に関する研究と 比較して極めて少なく,ましてや純 ZrO₂ 多結 晶体のマルテンサイト変態に関する研究は ほとんどない.

2. 研究の目的

本研究では、上述の学術的背景に基づき、 材料組織制御による高温型形状記憶セラミ ックス材料の開発を目的として、これまでに 純 ZrO₂に関する未解決の基礎的課題に対し て、下記に示す内容に関して行ってきた. (1)純 ZrO₂粉末の相変態と微細構造解析 (2)衝撃圧縮法を利用した純 ZrO₂の固化成形 (3)ZrO₂の高温焼結に伴い観察された異相界 面構造解析

3. 研究の方法

(1)純 ZrO₂ 粉末の相変態と微細構造解析については、供試材として水熱合成法により作製された市販の純 ZrO₂粉末を使用した.粉末の相変態挙動に関しては、示唆熱分析(DTA)を利用して、室温から1200℃の温度範囲で、加熱および冷却速度を毎分 2℃として調査を行い、変態点を実験的に求めた.微細構造については、X線回折および透過型電子顕微鏡観察により評価した.なお、透過型電子顕微鏡観線用試料については、粉末をそのまま溶媒中にて攪拌し、市販のマイクログリッドに粉末を固定させた状態で観察を行った.

(2)純 ZrO₂の固化成形については,火薬の爆発に伴い発生する衝撃波を利用した衝撃圧縮法を利用することによりその成形を試みた.衝撃圧縮は,崇城大学衝撃先端技術研究センターにて行った.

(3)ZrO₂の高温焼結については、3mol% Y_2O_3 を含有した ZrO₂ (3Y-TZP)粉末を用い、大気中 1650℃で2時間の焼結により作製したバルク 体を供試材とし、イオンミリングにより薄膜 化後、透過型電子顕微鏡による微細組織観察 およびナノプローブ電子線とエネルギー分 散分光法(EDS)を利用して組成分析を行った.

4. 研究成果

(1)純 ZrO₂粉末の相変態挙動と微細構造解析

図1には,純ZrO2のDTA曲線を示す.なお, 上側の曲線が加熱時,下側が冷却時にそれぞ れ対応している.加熱時は逆変態に対応する ピークは認められなかったものの、冷却に伴 い約 900℃近傍でマルテンサイト変態に伴う 発熱のピークが認められた.加熱時の逆変態 に対応するピークが認められなかったが、こ れは DTA 測定に供した試料が粉末そのもの であり, 非拘束系状態であることに起因して いると予測している.また、図2に示すよう に X 線回折を行ったところ、純 ZrO,粉末は 単斜晶のみで構成されていることを確認し た.また,逆変態温度近傍温度に対応する 1000℃および 1200℃での焼鈍を施した試料 においても,X線回折の結果では明瞭な変化 を得ることはなかった.図3および図4には, 透過型電子顕微鏡観察によって得られた純 ZrO, 粉末を表す明視野像およびそれぞれ電 子回折パターンを示す.図3において示した 電子回折パターンより粉末は単斜晶構造で あることが確認され,X線回折によって得ら れた結果と整合することを確認した.ただし, 図3におけるZrO₂粉末の内部に明瞭なコント

図 2 純 ZrO₂の X 線回折プロファイル

 図3 純 ZrO₂粉末のTEM 明視野像および制限 視野電子回折パターン

・ 図4 純 ZrO₂ 粉末の TEM 明視野像および領域
 B から得られた微小領域電子回折パターン

ラストの変化が認められたことからその詳細な観察を行った.その結果が図4の明視野 像(a)および領域 B から得られた微小領域電 子回折パターン(b)である.図4(b)を解析した 結果,図4(a)において認められる周期的なコ ントラストは(100)複合双晶に対応すること を明らかにすることが出来た.図5には、そ の(100)双晶の高分解能電子顕微鏡像を示す. 金属材料におけるマルテンサイト中に導入 される複合双晶は、一般に双晶界面が湾曲し ていることがこれまでに多くの研究者によ って報告されている.しかしながら、純ZrO₂ で観察された(100)双晶界面は、原子レベルで 非常に平滑であることを明らかにすること

図5 純ZrO₂粉末における(100)双晶のの高分 解能電子顕微鏡像

が出来た.これは,双晶を議論する際に必要 な結晶学的方位関係のみならずセラミック ス特有の化学的な環境に起因する状況も考 慮する必要があることを示唆している.また, 単斜晶 ZrO₂には,数種類の双晶が存在するこ とが報告されているが,現在のところ,これ ら ZrO₂ 粉末において,(100)双晶以外の双晶 系は確認されていない.この単一の双晶系の みの存在に関しては,粒子径すなわち結晶粒 径が約 50nm と非常に微細であること,かつ 粉末という非拘束系の状態であることに起 因すると現在考えている.ただし,詳細は, マルテンサイト変態の現象論等結晶学的お よび熱力学的な解析が必要である.

(2) 衝撃圧縮法を利用した純 ZrO2の固化成形

ZrO₂ 粉末の固化成形については、前述の通 り衝撃圧縮法を用いて行った.火薬の爆発に 伴い生じる衝撃エネルギーを利用した衝撃 固化成形実験による純 ZrO,バルク体の成形 を試みた.円盤状試料の作製が可能な衝撃圧 力装置を利用し,火薬量等実験条件を調整す ることにより衝撃圧力を系統的に変化させ た衝撃固化実験を行ったところ, 完全なバル ク体の作製までは至らなかったものの、部分 的な純 ZrO₂の固化成形に成功した. 図 6 に, 固化成形に成功した試料の走査型電子顕微 鏡観察結果を示す.なお、本結果は、衝撃圧 力のみならず, 衝撃圧力の付与方向にも固化 成形が強く依存していることを示しており, 今後の実験装置の改良で上記難焼結性の純 ZrO。粉末の固化成形が衝撃圧力を利用する ことで達成できることを示唆する結果であ

図6 純ZrO2固化成形体の走査型電子顕微鏡像

ると考えている.また,部分的ではあるもの の固化成形に成功した ZrO₂粉末には,高い衝 撃エネルギーが付与されていることから,そ の後の焼結も低温で可能となることを予測 しており,焼結挙動等さらなる調査が今後の 検討課題として明らかとなった.

(3) ZrO₂の高温焼結に伴い観察された異相界 面構造解析

ZrO,のみならずセラミックスのバルク体作 製には、一般的に焼結を最終的に施すことが 必要となる.本研究では、汎用 ZrO。セラミッ クスとしてよく知られている 3Y-TZP の焼結 に伴い生成した異相界面構造についても調 査を行った. 図7に, 1650℃で2時間の焼結 を施した 3Y-TZP の典型的な明視野像および それぞれの領域から得られた電子回折パタ ーンを示す. 図7(b)および(c)で確認されるよ うに、図 7(a)において観察される領域は立方 晶相と正方晶相で構成されており, 矢印で挟 まれた領域に見られる異相界面にはドット 状のコントラストを認めることが出来る.こ のコントラストを詳細に観察すると、図 8(a) に示すように、ミスフィット転位の存在を原 子レベルで確認することが出来た.また、こ の転位間隔は両相の格子定数差によって理 論的に決定することができ,図7(a)において 確認できるコントラストの間隔が、理論的に 求められた転位間隔と酔い一致を示すこと を明らかにすることが出来た.また、界面を 挟んだ領域で EDS 測定による Y2O3の濃度分 析を行ったところ、図9に示すように、界面 近傍で Y₂O₃ の急激な濃度変化が直接検出さ れた.この濃度変化は立方晶相と正方晶相に 固溶しうる Y2O3 の濃度が異なることに起因 しており、焼結を利用することで、2 相組織 の制御が可能となることを示唆する結果を 得ることが出来た.

図 7 (a) 3Y-TZP における焼結後のバルク体 において観察された c/t 異相界面近傍の明視野 像, (b),(c) それぞれ領域 B,C から得られた制 限視野電子回折パターン

図 8 (a) c/t 異相界面近傍の高分解能電子顕微 鏡像, (b),(c) 界面を挟んだ各領域から得られ た制限視野電子回折パターン

図 9 EDS によって測定された c/t 界面近傍に おけるイットリアの濃度分布

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

①. <u>S. Ii</u>, C. Iwamoto, S. Satonaka, K. Hokamoto and M. Fujita, "Microstructure of Bonding Interface in explosively welded Metal/Ceramic clad", Materials Science Forum, Vols. 638-642 (2010), 3775-3780. 査読有

②. K. Hokamoto, K. Nakata, A. Mori, <u>S. Ii</u>, R. Tomoshige, S. Tsuda, T. Tsumura, and A. Inoue, "Microstructural characterization of explosively welded rapidly solidified foil and stainless steel plate through the acceleration employing underwater shockwave, Journal of Alloys and Compounds, Vol. 485(2009), 817-821. 10.1016/j.jallcom.2009.06.082 査読有

③. <u>S. Ii</u>, R. Tomoshige, K. Hokamoto and M. Fujita, "Micro and Atomic Structure of the interface in advanced materials by using high pressure with shock wave", Proceeding of MC2009, edited by W. Grogger, F. Hofer and R. Polt, TU Graz, Vol.3 (2009), 479-480. 査読無

④. <u>S. Ii</u>, H. Yoshida, K. Matsui and Y. Ikuhara, "Misfit dislocation formation at the c/t interphase boundary in Y-TZP", Journal of American Ceramic Society, 91[11], 3810-3812.
10.1111/j.1551-2916.2008.02747.x 査読有

〔学会発表〕(計2件)

①. <u>S. Ii</u>, R. Tomoshige, K. Hokamoto and M. Fujita, "Micro and Atomic Structure of the interface in advanced materials by using high pressure with shock wave", Microscopy Conference 2009, 2009.9.1, Graz, Austria.

(2). <u>S. Ii</u>, C. Iwamoto, S. Satonaka, K. Hokamoto and M. Fujita, "Microstructure of Bonding Interface in explosively welded Metal/Ceramic clad", Thermec 2009, 2009.8.28., Berlin, Germany

6.研究組織
(1)研究代表者
井 誠一郎(Seiichiro II)
独立行政法人物質・材料研究機構
ハイブリッド材料センター・主任研究員
研究者番号:60435146

(2)研究分担者 なし

(3)連携研究者 なし