科学研究費補助金研究成果報告書

平成22年 6月 1日現在

研究種目:若手研究(B) 研究期間:2008~2009 課題番号:20760591 研究課題名(和文) 分子レーザー法と蒸留法を融合した新規同位体分離法「分子レーザー蒸 留法」の開発 研究課題名(英文) Development of the Novel Isotope Separation Method Combining the Molecular Laser Isotope Separation and Distillation 研究代表者 森 伸介(MORI SHINSUKE) 東京工業大学・大学院理工学研究科・助教 研究者番号:80345389

研究成果の概要(和文): ギ酸ードライアイス・メタノール冷媒およびギ酸メチルー液体窒素冷 媒のシステムを用いて分子レーザー蒸留法による同位体分離実験を行った。CO レーザー照射 により収率が上昇し、下流部で回収された作業ガスの炭素同位体組成を測定した結果、同位体 の濃縮が観察された。また、分離過程の分子動力学計算を行った結果、凝縮層は液相であるよ りも固相となるような温度の方が、分子交換現象による分離係数の低下が防げるため、分離性 能が向上するという知見が得られた。

研究成果の概要(英文): In this study, we propose a new isotope separation method which utilizes the condensation process of excited molecules under the action of a laser irradiation. The concept of this separation method is based on the difference in the condensation probability between excited molecules and unexcited ones. In the experimental study, formic acid and methyl formate are irradiated by the CO laser and pass through the condenser. The uncondensed gases are collected and their isotopic contents were measured. We could observe the carbon and oxygen isotope enrichment in the uncondensed gas. The features of this method are theoretically investigated using molecular dynamics simulation.

			(金額単位:円)
	直接経費	間接経費	合 計
2008 年度	1,800,000	540,000	2, 340, 000
2009 年度	1,400,000	420,000	1,820,000
年度			
年度			
年度			
総計	3, 200, 000	960, 000	4, 160, 000

交付決定額

研究分野:同位体分離、化学工学

科研費の分科・細目:総合工学・原子力学

キーワード:同位体分離、酸素同位体、炭素同位体、分子レーザー法、蒸留法、赤外レーザー、 CO レーザー、分子レーザー蒸留法

1. 研究開始当初の背景

現在、酸素・炭素の同位体の工業的分離には蒸留法が用いられている。近年になって、

これら実際のプラントが稼動するに至った 背景には、LNG 輸入プラントにおける冷熱・ 低温 CH₄および深冷空気蒸留プラントにおけ

る冷熱・低温 O_2 が分離コストに含まれてい ない特殊な状況があるためであり、一般的に は蒸留法は同位体分離係数が非常に小さく 巨大な深冷の蒸留塔を必要とし分離コスト が高いため、工業化の実績は十分であるがコ スト競争力は低い。一方、研究室規模では分 子レーザー法が 1970 年代から多くのグルー プによって研究が行われてきた。しかし、分 子レーザー法は、単段での分離係数は非常に た化学反応を起こすことで同位体を分離す るため、同位体の濃縮した反応生成物を再び 作業ガスに戻すプロセスが複雑化してしま い、多段カスケード化に向かず、未だ実用化 に至っていない。

2. 研究の目的

本研究では、赤外レーザーで選択励起した 振動励起分子の凝縮過程を用いて同位体を 分離することで、蒸留法と分子レーザー法の 欠点が補完され利点が活かされた、まったく 新しい画期的な同位体分離法の開発を行う。 すなわち、蒸留法の欠点である低い分離係数 が分子レーザー法の利点である高い分離係 数によって補完され、また分子レーザー法の 欠点である作業ガスの化学形態の変化に起 因する多段化の困難さが蒸留法の利点であ る相変化のみの利用による多段化の容易さ によって補完されている。

3. 研究の方法

(1) 分子の凝縮過程の分子動力学計算: 分子の凝縮過程の分子動力学計算を行い、 分子レーザー蒸留法に最適な凝縮相の温度 および入射分子のエネルギーに関する考察 を行った。具体的には、1個の単原子分子が 冷却壁表面に配置した 60 個の分子に衝突す る際の挙動を、入射粒子のエネルギーと冷却 壁温度をパラメータとして MD 法によってシ ミュレートした。

分子間ポテンシャルは以下の Lennard-Jones 12-6 モデルで与えた。

 $u(r) = 4\varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 \right]$ (1)

ここで、 σ は粒子直径であり ϵ は分子間力の 強さに対応するパラメータである。ここでは 直感的物理量との比較のためにアルゴン分 子を想定して σ =0.3405nm, ϵ =119.8 K とし た。計算の時間ステップは 2.14 fs とし 10000 ステップ程度の計算を行った。Fig.1 はその計 算結果の一例を示している。図中の●は入射 粒子を、〇は凝縮相の分子を表している。(a) は付着過程、(b)は反射過程、(c)は分子交換過 程を表す計算結果となっている。ここで、Ts, Tc はそれぞれ凝縮相の分子温度および衝突 粒子の温度である。

Fig.1 Sequential snapshots of a colliding molecule (\bullet) and surface molecules (\bigcirc). (a) $Ts = 0.1\varepsilon$, $Tc = 1.0\varepsilon$, (b) $Ts = 0.1\varepsilon$, $Tc = 70\varepsilon$, (c) $Ts = 0.5\varepsilon$, $Tc = 70\varepsilon$. *Ts* and *Tc* are the temperatures of surface and colliding molecules, respectively.

(2) CO レーザーとギ酸、ギ酸メチルを用いた 酸素・炭素同位体の分子レーザー蒸留法によ る分離実験:

分離セル内に CO レーザーを照射した状態 でギ酸を流通させ、分離セル内で凝縮せずに 下流部で回収されたギ酸の炭素および酸素 同位体組成を質量分析計で測定した。Fig.2 に実験装置図を示す。系内を排気した後に、 液体窒素で冷却されたセパレーター内にギ 酸、またはギ酸メチルを所定の圧力で流通さ せ、CO レーザーを照射した。セパレーター の内径は 5mm、長さは 2.5~10cm、流量は 0.1 ~10sccm とした。

Fig. 2 Experimental set-up

Fig. 3 Calculated probability of the collisional processes between colliding molecule and surface molecules.

4. 研究成果

(1) 分子の凝縮過程の分子動力学計算:

分離過程の分子動力学計算を行った結果、 凝縮層は液相であるよりも固相となるよう な温度の方が、分子交換現象による分離係数 の低下が防げることがわかった。また、入射 粒子のエネルギーは可視レーザー励起によ る電子励起状態よりも赤外レーザー励起に よる振動励起程度のエネルギーが分子レー ザー蒸留法には最適であることがわかった。 また、凝縮相の分子層が薄いほど分子交換現 象による分離係数の低下が防げるため、分離 性能が上がることがわかった。

Fig.3 は計算結果の一例であり、凝縮相の分子温度が 0.1 にから 0.5 に増加すると、分子交換反応の確率が増加していることがわかる。

(2) CO レーザーとギ酸、ギ酸メチルを用いた 酸素・炭素同位体の分子レーザー蒸留法によ る分離実験:

まず、文献調査と FT-IR による吸収波長測 定を行い、カルボニル基を有する化合物に関 して CO レーザーの発振波長と、吸収波長が 一致する化合物の選定を行った。その結果、 ギ酸とギ酸メチルが最適であるとの結論が 得られた。更に、レーザー照射セルとパワー モニターを用いて CO レーザーの吸収実験を 行った。その結果、ギ酸およびギ酸メチルに おいて十分な CO レーザーの吸収が観察され た。これらの結果を基に、ギ酸-ドライアイ ス・メタノール冷媒およびギ酸メチルー液体 窒素冷媒のシステムを用いて分子レーザー 蒸留法による同位体分離実験を行った。

ギ酸メチルー液体窒素冷媒のシステムを 用いた場合に、CO レーザー照射による収率 (分離セル内で凝縮せずに下流に流れ込む分 子の割合)の有意な上昇が確認できた。そして、 下流部で回収されたギ酸メチルの炭素同位 体組成を質量分析計で測定を行った結果、同 位体の濃縮が観察された。その結果を Fig.4 に示す。ここで、Cut はセパレーターでトラ ップされずに下流まで流れ去ったギ酸メチ ルの流量を、供給したギ酸メチルの流量で割 った値として定義した。また、分離係数は CO レーザーの発振帯域と¹²C ギ酸メチルの吸収 波長が一致していた為、セパレーターを通り 抜けたギ酸メチル中の¹²C/¹³C比を、供給した ギ酸メチル中の $^{12}C/^{13}C$ 比で割った値とした。 供給流量の減少に伴い Cut と分離係数が共に 増加するという妥当な結果が得られた。Fig.4 に示すように、分離係数の最大値は 1.033 で あった。

ギ酸ードライアイス・メタノール冷媒のシ ステムの場合、酸素同位体に対する分離係数 として 1.06 という値が得られた。また、炭素 同位体分離係数は 0.96 であった。これは、炭 素 13 が凝縮相側に濃縮していたことを表し ている。

また、数値計算の知見をもとに、液相の生 成を出来る限り抑制するために、分離セル内 に多孔性の吸着剤を吸収壁として配置し、同 位体分離実験を行った。まず、ギ酸を作業物 質、モレキュラーシーブ 5A を吸着剤として 用いて実験を行った。分離セルで吸着されず に流れ去り下流部で回収されたギ酸の炭素 および酸素同位体組成を質量分析計で測定 した。その結果、炭素の同位体分離係数はほ ぼ1であったが、酸素の同位体分離係数1.06 が得られ、吸着剤を併用することで分離性能 が向上するという知見が得られた。

以上のように、本研究を通して得られた分 離係数は、気液平衡定数から算出される分離 係数よりも十分に大きな値であり、本手法の 有効性を実験的に証明することができた。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔学会発表〕(計4件)

①Nga Thi Anh Nguyen, Toyoaki Hayakawa, <u>Shinsuke Mori</u> and Masaaki Suzuki,

"Isotope separation by condensation of vibrationally excited gas",

Proceedings of 16th ASEAN Regional Symposium on Chemical Engineering (RSCE2009) (Manila, Philippines, December 1-2, 2009) 3Pro-DOIPC16.

②<u>森 伸介</u>、早川豊晃、Nguyen Thi Anh Nga、 鈴木 正昭、

"赤外レーザーの吸収で生成した振動励起分 子の相転移過程を用いた同位体分離法の開 発"、

化学工学会米沢大会 2009、山形大学、2009 年 8 月 10 日~11 日、研究発表講演要旨集 C120.

③Toyoaki Hayakawa, <u>Shinsuke Mori</u>, Nga Thi Anh Nguyen, Masaaki Suzuki,

"Carbon and Oxygen Isotope Separation using Selective Excitation of Carbonyl Group by CO Laser", Book of Abstracts of the 2nd Thammasat University International Conference on Chemical, Environmental and Energy Engineering (TUChEEE2009) (Bangkok, Thailand, Mar. 3-4, 2009) pp.183-184.

④<u>Shinsuke Mori</u>, Toyoaki Hayakawa, Masaaki Suzuki,

"A Theoretical Study on the Distillation Intensified by Selective Laser Excitation",

Extended Abstracts on International Workshop on Process Intensification 2008 (IWPI2008) (Tokyo, Japan, Oct. 15-18, 2008) pp.136-137.

6.研究組織
(1)研究代表者
森伸介 (MORI SHINSUKE)
東京工業大学・大学院理工学研究科・助教
研究者番号: 80345389

(2)研究分担者

なし

(3)連携研究者 なし