研究成果報告書 科学研究費助成事業

研究者番号:10551343

交付決定額(研究期間全体):(直接経費) 13,500,000 円

研究成果の概要(和文):原子層堆積法(ALD)を用いて、2種類の金属酸化物を原子レベルで交互に積層させたナ ノラミネート構造からなる機能性複合酸化物膜を作製して、その特性を調べた。(Hf02)m/(Zr02)nナノラミネー ト膜では、ALDのm/nサイクル比を調整する事でHf/Zr組成を制御できた。GaNパワーデバイスの絶縁膜として、 (Hf02)m/(Al203)nナノラミネート構造から作製したHfAl0x膜が優れた信頼性特性を示した。今回、採用したALD による2種類の金属酸化物からなるナノラミネート構造は、新たなナノ材料設計の点で有望な手法の一つと言え る。

研究成果の学術的意義や社会的意義 本研究で試みた原子層堆積法を用いて原子レベルで制御した2種類の酸化物を積層させて作製したナノラミネー ト構造は、組合せ及び組成比を幅広く変える事ができ、その結果、ナノレベルでの材料設計ができた。この手法 で得られたナノラミネート膜からの構造変化で、その電気的な特性を評価する事で、学術的に有意義な知見を得 られた。また、幅広いアプリケーションの1つであるGaNパワーデバイスで、(Hf02)m/(Al203)nナノラミネート構 造から作製したHfAl0x腹が優れた信頼性特性を示したことから、ゲート絶縁膜として有望な候補材料である事を 示せたことは社会的に貢献できたと思う。

研究成果の概要(英文):We investigated characteristics of multifunctional oxide films with a nanolaminate structure which two types of metal oxides are alternately layered at the atomic level using atomic layer deposition. In the (HfO2)m/(ZrO2)n laminate films, the Hf/Zr ratio could be controlled by changing ALD m/n cycles. HfAlOx film which fabricated from (HfO2)m/(Al2O3)n nanolaminate structure exhibited superior reliability characteristics. Nanolaminate structures consisting of two types of metal oxides by ALD is one of the promising methods for designing new nanomaterials.

研究分野:半導体分野

キーワード: 原子層堆積法 ナノラミネート構造 機能性複合酸化物膜 高誘電率 HfAIOx膜 HfZrOx膜 GaNパワー デバイス

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

E

1.研究開始当初の背景

金属酸化物を絶縁膜として用いたコンデンサー、Dynamic random access memory (DRAM)及びパ ワーデバイス等の電子デバイスでは、低消費電力を達成するために低電圧動作で低リーク電流 が望まれ、それを実現するためには金属酸化物の物性で、大きなバンドギャップ(B_g)を維持した まま、高い誘電率(k)が要求されている。代表的な金属酸化物の B_gと k 値の関係を**図1**に示す。 B_g値は報告値を用いた[1,2]。一般に誘電率が高くなるに従って B_gが小さくなるトレードオフの 関係にある事が分かる。HfO₂及び ZrO₂は k 値に幅があるのは、結晶相に対応して誘電率が変わ るためである。現状、DRAM の絶縁膜としては、ZrO₂/AI₂O₃/ZrO₂の 3 層構造で、結晶化した ZrO₂ は高誘電率層として、アモルファスな AI₂O₃層は大きな B_gを利用したリーク電流を抑制する層と して働いている。この様に、個々の金属酸化物及びそれらを積層した ZrO₂/AI₂O₃/ZrO₂の k 値及

び結晶構造は材料物性の範疇にあり、未知な物性を有 する新規な機能性複合酸化物材料の設計は難しい状 況であった。また、Al₂0₃/(Ta/Nb)0_x/Al₂0₃構造のチャ ージトラップメモリでは、Al₂0₃層と(Ta/Nb)0_x層のコ ンダクションバンド(E_c)の差から、注入された電荷が (Ta/Nb)0_x層に蓄積される結果を報告した[3]。そし て、(Ta/Nb)0_x層に酸素欠損(V₀)などの電気的な欠陥 があると、この電荷の蓄積が増加する知見を得た。こ れを踏まえて、TiO₂層とAl₂O₃層の積層構造は、TiO₂ 層の V₀とAl₂O₃との E_cの差から電荷蓄積が生じ、その 結果、容量増加と k 値の増加が期待できる。しかし、 この容量はバイアス電圧を反転させる事で容易に 電荷の蓄積/放出するために、絶縁膜としての不安 定性が懸念されると共に、真の物性を意味していな いと考えられる。

2.研究の目的

本提案では、新規な機能性複合酸化物材料の設計として、2種類の金属酸化物を原子レベルで交 互に積層させて作製する新たなナノラミネート構造に着目した。手法としては、オングストロー ムオーダーの原子レベルで制御できる原子層堆積法(Atomic layer deposition: ALD)を用いて、 機能性複合酸化物の創成を試みて、得られた膜の結晶構造及び誘電率及び耐圧の電気特性を調 べた。

3.研究の方法

目的とする2種類の金属酸化物から構成されるナノラミネート構造の機能性複合酸化膜として、 (HfO₂)_m/(ZrO₂)_n、(HfO₂)_m/(Al₂O₃)_n、(HfO₂)_m/(SiO₂)_n及び(NbO_x)_m/(ZrO₂)_nの4種類を選択した。機能性複合酸化膜の作製方法としてALDを用いて、m/nのALDサイクル比率を変える事で各機能性 複合酸化物膜の組成を制御した。ALD 原料として、HfO₂ は Hf[(N(CH₃)₂)₄] (TDMAHf)及び (C₅H₅)Hf[(N(CH₃)₂)₃] (HfCp)の2種類、ZrO₂ は(C₅H₅)Zr[(N(CH₃)₂)₃] (ZrCp)、SiO₂ はSiH[N(CH₃)₂]₃ (TDMAS)、Al₂O₃ はAl(CH₃)₃ (TMA)及びNbO_x は(tert-C₄H₉)N=Nb[N(C₂H₅)₂]₃ (TBTDENb)を選択した。 手順としては、先ず、各々の原料と酸化剤としてH₂O またはO₂ plasma ガスを用いたALD で、ALD サイクルと得られた各々の酸化物膜の膜厚(分光エリプソ測定)の関係を調べた。全ての酸化物 膜が直線関係を満足することより、その傾きより各々の酸化物膜の成長速度(Growth per cycle: GPC)を求めた。そして、この GPC を元に2種類の金属酸化物から成るナノラミネート膜を設計し

た。例として、(Hf0₂)_m/(Si0₂)_n ナノラミネート構造の模式図を**図**2 に 示す。ALD の Hf0₂ 及び Si0₂ 層のサイクル比と作製した(Hf0₂)_m/(Si0₂)_n ナノラミネート膜の Hf/Si 組成比(TEM + EDS 分析データ)は直線関係 を満足する事が分かった。ALD のサイクル比(m/n)が 1/1、2/1 及び 3/1 の場合の膜の組成比は、各々、Hf_{0.44}Si_{0.56}O_x、Hf_{0.57}Si_{0.43}O_x 及び Hf_{0.63}Si_{0.37}O_x であった。他の(Hf0₂)_m/(ZrO₂)_n、(HfO₂)_m/(Al₂O₃)_n 及び (NbO_x)_m/(ZrO₂)_n ナノラミネート膜の組成比も同様に ALD サイクルを変 えて制御できた。

(Hf0₂)_m/(Zr0₂)_n 及び(Nb0_x)_m/(Zr0₂)_n ナノラミネート膜の電気特性を調 べるために、TiN/絶縁膜/TiN の Metal-Insulator-Metal (MIM)構造を 用いた。比較として、Hf0₂ 及び Zr0₂ 膜もこの MIM 構造を用いた。また、 Al₂0₃、Hf0₂ 及び(Hf0₂)_m/(Si0₂)_n 及び(Hf0₂)_m/(Al₂0₃)_n ナノラミネー

ト膜については、GaN パワーデバイスのゲート絶縁膜としての有 効性を調べるために、n-GaN/絶縁膜/Pt の Metal-Insulator-Semiconductor (MIS)構造を用いた。

		1
n	SiO ₂	
m	HfO ₂	
n	SiO ₂	l
m	HfO ₂	J
n	SiO ₂	
m	HfO ₂	
	n-GaN	/
	n ⁺ -GaN	

図2 (HfO₂)_m/(SiO₂)_nナノ ラミネート構造の模式図

4.研究成果

(1) (HfO₂)_m/(ZrO₂)_nナノラミネート膜の検討

(HfO₂)_m/(ZrO₂)_nナノラミネート膜の m/n 比を変えた場合の結晶構造を調べるために、HfCp 及び ZrCp 原料及び H₂O ガスを用いた成長温度 300 の ALD で、p-Si/SiO₂ 基板上へ膜厚 10nm 成膜し

た。m/n=0/1~1/4のZr リッチな範囲では、XRD 測 定より2 =30.3°付近にブロードなピークが認 められた。これは、ZrO2のtetragonal、 orthorhombic及びcubic相(t,o,c-ZrO2)のいずれ かの結晶相である。一方、m/n=1/3~1/0のHf 組 成が多くなると、先程のピークを含めていずれの ピークも認められず、ラミネート構造を維持した アモルファス膜である事が分かった。これは、 ZrCp 原料のALDではas-grownでZrO2膜が結晶化 するのに対して、HfCp 原料のALDで作製したasgrownのHfO2膜はアモルファス構造になったが、 同じ Cp 配位子にも係わらず、異なる原料の分解

酸化 結晶化工程である事を示している。そこ で、m/n=1/2のナノラミネート膜について、熱処 理(Post deposition anneal: PDA)による膜の構 造変化について調べた。ここで、HfO₂とZrO₂膜の ALD 成長速度から求められた m/n=1/2のHf/Zr 組 成はHf_{0.36}Zr_{0.64}O_xであった。PDA 温度を 300~500

と変えた場合の XRD パターンを図3 に示す。As-grown 及び 300 の膜は如何なるピークも認め られない事よりアモルファス構造だったが、400 でt,o,c-ZrO2起因のブロードなピークが現れ、 この温度で結晶開始することが分かった。そして、500 と高温度にしてもブロードなピークの ままであり、結晶化が促進される傾向は認め

られなかった。

次に、(HfO₂)_m/(ZrO₂)_nナノラミネート膜の Hf/Zr 組成、ナノラミネート構造のアモルファ ス及び結晶構造が電気特性へ及ぼす影響を調 べた。p⁺-Si/TiN/(HfO₂)_m/(ZrO₂)_nナノラミネー ト膜(10nm)/TiN の MIM キャパシタを作製し た。周波数 10kHz で、電圧を+3~-3V でスイー プした C-V 測定から、OV の容量値を求めて、 k値を算出した。図4に(HfO2)m/(ZrO2)nナノラ ミネート膜のHf 濃度と k 値の関係を示す。Hf 濃度 0%(ZrO₂)の As-grown 膜の k 値は 27 であ った。そして、Hf 濃度が高くになるに従って k値が減少する傾向を示した。また、Hf22%及 び36%のキャパシタを比較して、急激な k 値の 変化が認められない事より、t,o,c-ZrO2 結晶 相とラミネート構造を維持したアモルファス の結晶構造の影響は小さいと考えられる。 PDA300 は、As-grown と同じ k 値であった。 しかし、PDA400 では、Hf 濃度が 36%まで k 値 が急激に増加した。Hf22%以下では t,o,c-ZrO₂ 起因の XRD ピークがブロードからシャープに 変化して、結晶化が促進した事が分かった。ま た、Hf36%は、図4で説明した様にアモルファ ス構造から t,o,c-ZrO₂構造へ結晶化した。 方、Hf53%はアモルファス構造を維持しており、 PDA300 と同じ k 値を示した。PDA500 になる と、いずれの Hf 濃度でも k 値は高くなり、約 34 を示した。この PDA 温度になると、Hf53%も t,o,c-ZrO2相が認められ、結晶化した事が確認 できた。これは、 $(HfO_2)_m/(ZrO_2)_n$ ナノラミネー ト膜では、結晶性が k 値を決定する主な因子で ある事を示している。(HfO2)m/(ZrO2)nナノラミ ネート膜のHf濃度と絶縁破壊電界(Breakdown electric field: Em)の関係を調べた結果を図 5 に示す。リーク電流(J= 1×10⁻²Acm⁻¹)での電 圧をゲート絶縁膜の膜厚で割った値を E_{BD}とし

図3 PDA温度300~500 と変えた場合の Hf_{0.36}Zr_{0.64}0_x膜のXRDパターン

図4 (HfO₂)_m/(ZrO₂)_nナノラミネート膜の Hf濃度と*k*値の関係

図5 (HfO₂)_m/(ZrO₂)_nナノラミネート膜の Hf濃度とE_{nn}値の関係

た。Hf27 及び 36%キャパシタは、PDA400 以下で、E_{BD}値が約3.0MVcm⁻¹以下と小さな値を示した。 しかし、この両キャパシタも、PDA500 になると E_{BD}値が3.4MVcm⁻¹まで改善した。一般に、多結 晶構造の絶縁膜では、結晶の粒界で耐圧が低下する事が挙げられており、このキャパシタも同様 の理由であると推察している。Hf22%まで E_{BD}値が増加する傾向を示しており、図4の*k*値とは トレードオフの関係にあった。これは、目的とするデバイスに対して、(HfO₂)_m/(ZrO₂)_nナノラミ ネート膜の Hf/Zr 組成を調整する事で対応できる事を意味している。

(2) GaN デバイスのゲート絶縁膜の検討

GaN パワーデバイスのゲート絶縁膜としては、高電圧のアプリケーションから、高 k 値及びアモ ルファス構造が望まれている。従来は、k 値が 3.9 の SiO₂ ゲート絶縁膜であり、物理膜厚を厚く できる高 k 値な材料が期待されていた。ゲート絶縁膜として、HfSiO_x 膜、HfAIO_x膜、HfO₂ 膜及び

Al₂0₃ 膜の 4 種類を準備し た。n⁺-GaN/n-GaN エピ/ゲー ト絶縁膜/Pt の MIS キャパ シタは次の手順で作製し た。先ず、n⁺-GaN/n-GaN エ ピ基板の表面へ付着した有 機物の不純物等を除去する ために SPM 及び BHF 溶液を 用いて洗浄した。HfSiOx 膜 は

図 2 で

説明した

様に、

成 長温度 300 、0₂ plasma ガ スを用いた ALD で、 (HfO₂)_m/(SiO₂)_n(m/n=2/1 及 び 3/1)ナノラミネート膜 を n⁺-GaN/n-GaN エピ基板 上へ成膜した。HfAIO_x 膜も 同様に 300 の ALD で、 $(HfO_2)_m/(AI_2O_3)_n(m/n=2/1)$

ナノラミネート膜を 成膜した。HfO2膜及び AI2O3 膜は、H20 ガスを

図6 (a) Al₂O₃、(b) HfO₂、(c) Hf_{0.55}Al_{0.45}O_x及び(d) Hf_{0.64}Si_{0.36}O_x膜の断面TEM像

用いた 300 の ALD で、成膜した。続いて、N₂雰囲気中、PDA800 で熱処理した。PDA800 で熱処理した後の4 種類の膜の断面 TEM 像を**図**6 に示す。図 6(a) Al₂O₃ 膜は、格子パターンが観察 されており、電子線回折像でも Al₂O₃ 膜の結晶に伴うスポットが観察され、結晶化している事が 分かった。結晶構造は γ -Al₂O₃相であった。図 6(b) HfO₂ 膜の格子パターン及び電子線回折像のス ポットより結晶化している事が分かった。結晶構造は Monoclinic 相であった。一方、図 6(c) Hf_{0.55}Al_{0.45}O_x及び 6(d) Hf_{0.64}Si_{0.36}O_x 膜は、電子線回折像で如何なるスポットも観察されなかった

より、アモルファス構造であった。一方、 アモルファス構造の Al₂O₃ 膜を作製するた めに PDA 処理を実施しなかった。最後に、 Pt ゲート電極はゲート絶縁膜上にスパッ タリング法で成膜して、Ti/Pt オーミック 電極は n⁺-GaN 裏面ヘスパッタリング法で 成膜して、MIS キャパシタを作製した。Al₂03 キャパシタは、N2雰囲気中、300 で熱処理 した。次に、Hf_{0.55}AI_{0.45}O_x、Hf_{0.57}Si_{0.43}O_x及び Al₂0₃ ゲート絶縁膜の信頼性を議論するた めに、Positive bias stress (PBS)でのフ ラットバンド電圧(V_{fb})のシフトを調べた。 V_{fb} 値からのストレス実効電界(Effective E (E_{eff}) from V_{fb})を印可したまま、ストレ ス時間を0~300sと変えた。ストレス時間 300s における E_{eff} from V_{fb} と V_{fb} シフトの 関係を図7に示す。Al203 膜はストレス電 界が大きくなるに従って、V_{fb}シフトも急 激に増大する傾向を示した。E_{eff} from V_{fb}

図7 Al₂O₃、Hf_{0.55}Al_{0.45}O_x及びHf_{0.57}Si_{0.43}O_x膜 のPBSでのV_{fb}シフト

が約8.2MVcm⁻¹での V_{fb} シフトは、AI₂O₃(0.4V) > Hf_{0.57}Si_{0.43}O_x(0.25V) > Hf_{0.55}AI_{0.45}O_x(0.2V)の順で大きくなった。また、Hf_{0.55}AI_{0.45}O_x膜は、E_{eff} from V_{fb} が15MVcm⁻¹でも、 V_{fb} シフト値が0.25Vと非常に小さく、優れた信頼性特性を示す事が分かった。これより、GaN パワーデバイスのゲート絶縁膜の候補材料として、k値も17.2と大きいHfAIO_x膜が有望である事が分かった。

(3) 単一金属酸化物膜及び複合酸化物膜の誘電率特性

ナノラミネート構造膜の研究及び GaN パワーデバイス用ゲート絶縁膜の研究から、得られた単 一金属酸化物膜としての Al₂0₃、HfO₂ 及び

ZrO2 及び複合酸化物膜としての HfSiOx、 HfAIO_x及びZrNbO_xのk値とB_aの関係を既 に説明した図1に再プロットした図8に 示す。赤字の シンボルが本研究で得ら れた k 値のデータである。ZrNbO_xの B_q 値 は、ZrO₂とNb₂O₅のB_aより推定した値を 用いた。結晶化した ZrO2 膜が最も大きな k値を示した。また、GaN パワーデバイス で要求されるアモルファス構造で比較的 大きな k 値を考慮すると、HfAIOx が有望 である事がこの図からも分かる。 今後も、デバイスのアプリケーションに 対応した絶縁膜の材料開発は必要であ り、今回、採用した ALD による 2 種類の 金属酸化物からなるナノラミネート構造 の作製は、新たなナノ材料設計の点で有

< 引用文献 >

望な手法の一つと言える。

- [1] S. Miyazaki et al., Appl. Sur. Sci. 113/114, 585(1997).
- [2] J. Robertson, J. Appl. Phys. 100, 014111(2006).

[3] T. Nabatame et al., J. Vac. Sci. Technol. A 33, 01A118(2014).

5.主な発表論文等

〔雑誌論文〕 計12件(うち査読付論文 12件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名 Onaya Takashi、Nabatame Toshihide、Inoue Mari、Sawada Tomomi、Ota Hiroyuki、Morita Yukinori	4.巻 10
2 . 論文標題 Wake-up-free properties and high fatigue resistance of HfxZr1-x02-based metal-ferroelectric- semiconductor using top Zr02 nucleation layer at low thermal budget (300°C)	5 . 発行年 2022年
3.雑誌名 APL Materials	6.最初と最後の頁 051110~051110
「掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/5.0091661	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 4.巻 生田目 俊秀 74 2.論文標題 5.発行年 電子デバイスへ向けた原子層堆積法で作製した金属酸化膜の研究 2023年 3.雑誌名 6.最初と最後の頁 表面技術 137 ~ 140 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 なし 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難

1.著者名	4.巻
Nabatame Toshihide Maeda Erika, Ingue Mari Hirose Masafumi Irokawa Yoshihiro. Ohi Akihiko	30
Hada Nacki Opava Takaabi Shizaki Kaji Opi Buda Habizuma Tamatau Kajda Vacu	55
2.論文標題	5 . 発行年
Influence of Hf02 and Si02 interfacial layers on the characteristics of n-GaN/HfSi0x capacitors	2021年
using plasma-enhanced atomic layer deposition	· ·
	6 是初と是後の百
Journal of Vacuum Science & lechnology A	062405 ~ 062405
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10 1116/6 0001334	有
オープンアクセス	国際共著
オーノノアクヒスではない、文はオーノノアクセスが困難	-

1.著者名 Onaya Takashi、Nabatame Toshihide、Inoue Mari、Sawada Tomomi、Ota Hiroyuki、Morita Yukinori	4.巻 104
2.論文標題 Study of SiO2 Interfacial Laver Growth during Eabrication Process of Ferroelectric Hfy71-x02-	5 . 発行年 2021年
Based Metal-Ferroelectric Semiconductor	2021-
3. 雑誌名	6.最初と最後の頁
FCS Transactions	129 ~ 135
	120 100
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1149/10404.0129ecst	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Nabatame Toshihide Maeda Erika, Inque Mari, Hirose Masafumi, Ochi Ryota, Sawada Tomomi,	104
Lackawa Vashibita, Hashizuma Tamatau, Shiazaki Kaji Azava Takashi Takashi Kazubita, Kajda	104
Yasuo	
2.論文標題	5 . 発行年
(Invited) Study of Hf02-Based High-k Gate Insulators for GaN Power Device	2021年
	2021-
<u>a</u> 1844 d	
3. 維読者	6. 最初と最後の貝
ECS Transactions	113 ~ 120
掲載論文のDOL(デジタルオブジェクト識別子)	査請の有無
10.1149/10404.0113ecst	月
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
1 著者名	4
Source Tanami Nabatama Tashihida Onova Takashi Jagua Mari Ohi Akihika Ikada Naski	104
Sawada Tomomi, Nabatame Toshimide, Unaya Takashi, Inode Mari, Uni Akimiko, Ikeda Naoki,	104
ISUKAgoshi Kazunito	
2 . 論文標題	5 . 発行年
Importance of Annealing Step on Dielectric Constant of ZrO2 Layer of MIM Capacitors with	2021年
A1203/Zr02 and Zr02/A1203 Stack Structures	-
	6 是如と是後の百
し う ・ 赤田 読 白	0.取物に取扱の貝

121 ~ 128

査読の有無

国際共著

有

-

3.雑誌名 ECS Transactions

掲載論文のDOI(デジタルオブジェクト識別子) 10.1149/10404.0121ecst

オープンアクセス

ス オープンアクセスではない、又はオープンアクセスが困難

1.著者名 Onaya Takashi、Nabatame Toshihide、Inoue Mari、Jung Yong Chan、Hernandez-Arriaga Heber、Mohan Jaidah、Kim Harrison Sejoon、Sawamoto Naomi、Nagata Takahiro、Kim Jiyoung、Ogura Atsushi	4.巻 98
2.論文標題	5 . 発行年
Improvement of Ferroelectricity and Fatigue Property of Thicker HfxZr1-x02/Zr02 Bi-layer	2020年
3. 雑誌名	6.最初と最後の頁
ECS Transactions	63 ~ 70
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1149/09803.0063ecst	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 Onaya Takashi、Nabatame Toshihide、Inoue Mari、Jung Yong Chan、Hernandez-Arriaga Heber、Mohan Jaidah、Kim Harrison Sejoon、Sawamoto Naomi、Nagata Takahiro、Kim Jiyoung、Ogura Atsushi	4.巻 117
2.論文標題	5 . 発行年
Improvement in ferroelectricity and breakdown voltage of over 20-nm-thick HfxZr1-xO2/ZrO2 bilayer by atomic layer deposition	2020年
3.雑誌名	6.最初と最後の頁
Applied Physics Letters	232902 ~ 232902
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/5.0029709	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 Hirose Masafumi、Nabatame Toshihide、Irokawa Yoshihiro、Maeda Erika、Ohi Akihiko、Ikeda Naoki、 Ohi Akihiko、Ikeda Naoki、	4.巻 39
Sang Liwen、Koide Yasuo、Kiyono Hajime 2.論文標題	5、発行年
Interface characteristics of -Ga203/AI203/Pt capacitors after postmetallization annealing	2021年
3.雑誌名	6.最初と最後の頁
Journal of Vacuum Science &Technology A	012401 ~ 012401
	 査読の有無
10.1116/6.0000626	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著
1.著者名 Kobayashi Riku、Nabatame Toshihide、Onaya Takashi、Ohi Akihiko、Ikeda Naoki、Nagata Takahiro、 Tsukagoshi Kazuhito、Ogura Atsushi	4.巻 ⁶⁰
2.論文標題	5 . 発行年
Comparison of characteristics of thin-film transistor with In203 and carbon-doped In203 channels by atomic layer deposition and post-metallization annealing in 03	2021年
3. 維誌名	6.最初と最後の頁
Japanese Journal of Applied Physics	030903 ~ 030903
	 査読の有無
10.35848/1347-4065/abde54	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-
· ***//	م <u>۲</u> ۲
1.者看名 Onaya Takashi、Nabatame Toshihide、Jung Yong Chan、Hernandez-Arriaga Heber、Mohan Jaidah、Kim Harrison Sejoon、Sawamoto Naomi、Nam Chang-Yong、Tsai Esther H. R.、Nagata Takahiro、Kim Jiyoung、Ogura Atsushi	4.登 9
2 論文揮頭	5
Correlation between ferroelectricity and ferroelectric orthorhombic phase of HfxZr1-x02 thin films using synchrotron x-ray analysis	2021年
3. 雑誌名	6.最初と最後の頁
APL Materials	031111 ~ 031111
 掲載論文のDOI(デジタルオブジェクト識別子)	<u> </u>
10.1063/5.0035848	有
オープンアクセス	国際共著
オーブンアクセスではない、又はオーブンアクセスが困難	-
1	4 券
Коbayashi Riku, Nabatame Toshihide, Onaya Takashi, Ohi Akihiko, Ikeda Naoki, Nagata Takahiro, Tsukagoshi Kazuhito, Ogura Atsushi	60
2.論文標題	5.発行年
Influence of adsorbed oxygen concentration on characteristics of carbon-doped indium oxide thin-film transistors under bias stress	2021年
3. 雑誌名	6.最初と最後の頁
Japanese Journal of Applied Physics	SUGMUT ~ SUGMUT
	<u></u> 査読の有無
10.35848/1347-4065/abe685	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著
	1

〔学会発表〕 計29件(うち招待講演 6件/うち国際学会 17件)

1. 発表者名 Takashi Onaya, Toshihide Nabatame, Yukinori Morita, Hiroyuki Ota, Shinji Migita, Koji Kita, Takahiro Nagata, Kazuhito Tsukagoshi

2.発表標題

Ferroelectric HfxZr1 - x02-based capacitors with controlled-oxidation surface of TiN bottom-electrode

3 . 学会等名

MNC 2022, 35th International Microprocesses and Nanotechnology Conference. 2022(国際学会)

4.発表年 2022年

LULL

1.発表者名

Tomomi Sawada, Toshihide Nabatame, Makoto Takahashi, Kazuhiro Ito, Takashi Onaya, Yoshihiro Irokawa, Yasuo Koide, Kazuhiro Tsukagoshi

2.発表標題

Structural change of Ga203 film on GaN(0001) substrate by atomic layer deposition and post-deposition annealing

3 . 学会等名

MNC 2022, 35th International Microprocesses and Nanotechnology Conference. 2022(国際学会)

4.発表年

2022年

1.発表者名

Toshihide Nabatame

2.発表標題

Study of gate insulator for GaN power device using atomic layer deposition

3.学会等名

MNC 2022, 35th International Microprocesses and Nanotechnology Conference. 2022(招待講演)(国際学会)

4.発表年 2022年

1.発表者名

Toshihide Nabatame, Tomomi Sawada, Makoto Takahashi, Kazuhiro Ito, Takashi Onaya, Yoshihiro Irokawa, Yasuo Koide, Kazuhiro Tsukagoshi

2.発表標題

Growth of Ga203 films on Si and GaN substrates by atomic layer deposition and post-deposition annealing

3 . 学会等名

Visual-JW 2022 & DEJ12MA-2(招待講演)(国際学会)

4.発表年 2022年

女屋 崇, 生田目 俊秀, 長田 貴弘, 上田 茂典, Y. C. Jung, H. Hernandez-Arriaga, J. Mohan, J. Kim, C.-Y. Nam, E. H. R. Tsai, 喜 多 浩之, 右田 真司, 太田 裕之, 森田 行則

2.発表標題

異なる酸化剤を用いた原子層堆積法により作製した 強誘電体HfxZr1 - x02/TiNの構造評価

3.学会等名2022年 第83回応用物理学会秋季学術講演会

4.発表年 2022年

1.発表者名

澤田 朋実, 生田目 俊秀, 高橋 誠, 伊藤 和博, 女屋 崇, 色川 芳宏, 小出 康夫, 塚越 一仁

2.発表標題

GaN(0001)基板上でのアモルファスGa203膜の熱処理による高配向結晶成長

3 . 学会等名

第28回 電子デバイス界面テクノロジー研究会

4.発表年 2023年

1.発表者名

女屋 崇, 生田目 俊秀, 森田 行則, 太田 裕之, 右田 真司, 喜多 浩之, 長田 貴弘, 塚越 一仁, 松川 貴

2.発表標題

TiN下部電極の表面酸化による強誘電体TiN/HfxZr1 - x02/TiNキャパシタの分極疲労の抑制

3 . 学会等名

第28回 電子デバイス界面テクノロジー研究会

4.発表年 2023年

.

1.発表者名 生田目 俊秀

2.発表標題

酸化物半導体デバイスにおける原子層堆積技術の最前線.

3 . 学会等名

2023年 第70回応用物理学会春季学術講演会(招待講演)

4.発表年 2023年

女屋 崇, 長田 貴弘, 生田目 俊秀, 山下 良之, 塚越 一仁, 森田 行則, 太田 裕之, 右田 真司, 喜多 浩之

2.発表標題

分極疲労時の強誘電体HfxZr1 - x02/TiN界面反応に起因した酸素欠損生成の起源

3.学会等名2023年 第70回応用物理学会春季学術講演会

4.発表年 2023年

1.発表者名

Toshihide Nabatame, Erika Maeda, Mari Inoue, Ryota Ochi, Yasuhiro Irokawa, Tamotsu Hashizume, Koji Shiozaki, Yasuo Koide

2.発表標題

Study of HfSiOx film as gate insulator for GaN power device

3 . 学会等名

20th International Workshop on Junction Technology 2021(招待講演)(国際学会)

4.発表年 2021年

1.発表者名

Takashi Onaya, Toshihide Nabatame, Naomi, Sawamoto, Akihiko Ohi, Naoki Ikeda, Takahiro Nagata, Atsushi Ogura

2.発表標題

Effect of Ti Scavenging Layer on Ferroelectricity of HfxZr1-x02 Thin Films Fabricated by Atomic Layer Deposition Using Hf/Zr Cocktail Precursor

3 . 学会等名

AVS 21st International Conference on Atomic Layer Deposition (ALD 2021)(国際学会)

4.発表年 2021年

1 . 発表者名

Toshihide Nabatame, Mari Inoue, Erika Maeda, Takashi Onaya, Masashi Hirose, Riku Kobayashi, Akihiko Ohi, Naoki Ikeda, Kazuhito Tsukagoshi

2.発表標題

Study of SiO2 growth mechanism between a single SiO2 and (HfO2)/(SiO2) nanolaminate formation by ALD using TDMAS and H2O gas

3 . 学会等名

21st International Conference on Atomic Layer Deposition. 2021(国際学会)

4. <u></u>発表年 2021年

Toshihide Nabatame, Erika Maeda, Mari Inoue, Masashi Hirose, Ryota Ochi, Yasuhiro Irokawa, Tamotsu Hashizume, Koji Shiozaki, Yasuo Koide

2.発表標題

Investigation of HfSiOx gate insulator formed by changing fabrication process conditions for GaN power device

3 . 学会等名

2021 Asia-Pacific Workshop on Fundamentals and Applications of Advanced Semiconductor Devices (AWAD 2021)(招待講演)(国際 学会) 4. 発表年

2021年

 1.発表者名 女屋 崇,生田目 俊秀,井上 万里,澤田 朋実,太田 裕之,森田 行則

2.発表標題

TiN/HfxZr1-x02/Si-MFS作製におけるSi02界面層成長の抑制

3 . 学会等名

第82回応用物理学会秋季学術講演会

4.発表年 2021年

1.発表者名

Takashi Onaya, Toshihide Nabatame, Mari Inoue, Tomomi Sawada, Hiroyuki Ota, Yukinori Morita

2.発表標題

Study of SiO2 Interfacial Layer Growth during Fabrication Process of Ferroelectric HfxZr1-xO2-Based Metal-Ferroelectric-Semiconductor

3 . 学会等名

240th ECS Meeting(国際学会)

4.発表年

2021年

1.発表者名

Sawada Tomomi, Nabatame Toshihide, Onaya Takashi, Inoue Mari, Ohi Akihiko, Ikeda Naoki, Tsukagoshi Kazuhito

2.発表標題

Importance of Annealing Step on Dielectric Constant of ZrO2 Layer of MIM Capacitors with Al2O3/ZrO2 and ZrO2/Al2O3 Stack Structures

3.学会等名

240th ECS Meeting(国際学会)

4. <u></u>発表年 2021年

1

Nabatame Toshihide, Maeda Erika, Inoue Mari, Hirose Masafumi, Ochi Ryota, Sawada Tomomi, Irokawa Yoshihiro, Hashizume Tamotsu, Shiozaki Koji, Onaya Takashi, Tsukagoshi Kazuhito, Koide Yasuo

2.発表標題

Study of Hf02-based High-k gate insulators for GaN power device

3 . 学会等名

240th ECS Meeting (国際学会)

4.発表年 2021年

1.発表者名

女屋 崇, 生田目 俊秀, 長田 貴弘, 上田 茂典, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Jiyoung Kim, Chang-Yong Nam, Esther H. R. Tsai, 太田 裕之, 森田 行則

2.発表標題

強誘電性の向上へ向けたTiN/HfxZr1-x02界面のTiOxNy層の重要性

3 . 学会等名

第27回 電子デバイス界面テクノロジー研究会. 2022

4.発表年 2022年

1.発表者名

Toshihide Nabatame, Takashi Onaya, Erika Maeda, Masashi Hirose, Yoshihiro Irokawa, Koji Shiozaki, Yasuo Koide

2.発表標題

Study of ALD Hf02-based high-k for GaN power devices and Ferroelectric devices

3 . 学会等名

20th International conference on Atomic Layer Deposition (ALD/ALE 2020)(招待講演)(国際学会)

4.発表年 2020年

1.発表者名

小林 陸, 生田目 俊秀, 女屋 崇, 大井 暁彦, 池田 直樹, 長田 貴弘, 塚越 一仁, 小椋 厚志

2.発表標題

Air及びN2雰囲気のバイアスストレスによるアモルファスCarbon-doped In203TFTのトランジスタ特性

3.学会等名

第81回応用物理学会秋季学術講演会

4. <u></u>発表年 2020年

前田 瑛里香, 生田目 俊秀, 廣瀨 雅史, 井上 万里, 大井 暁彦, 池田 直樹, 塩崎宏司, 橋詰保, 清野肇

2.発表標題

GaNパワーデバイス用HfAIOx、HfSiOx、AISiOx、AI203及びHfO2 絶縁膜の特性比較

3.学会等名第81回応用物理学会秋季学術講演会

4.発表年 2020年

1.発表者名

女屋 崇, 生田目 俊秀, 井上 万里, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Harrison S. Kim, 澤本 直美, 長田 貴 弘, Jiyoung Kim, 小椋 厚志

2.発表標題

HfxZr1 - x02/Zr02積層構造による強誘電体厚膜の強誘電性の向上

3 . 学会等名

第81回応用物理学会秋季学術講演会

4.発表年 2020年

1.発表者名

Takashi Onaya, Toshihide Nabatame, Mari Inoue, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Harrison S Kim, Naomi Sawamoto, Takahiro Nagata, Jiyoung Kim, Atsushi Ogura

2.発表標題

Improvement of Ferroelectricity and Fatigue Property of Thicker HfxZr1 - x02/Zr02 Bi-layer

3.学会等名

Pacific Rim Meeting on Electrochemical and Solid-State Science 2020 (PRiME 2020)(国際学会)

4.発表年 2020年

1.発表者名

Toshihide Nabatame, Tomoji Oishi, Mari Inoue, Makoto Takahashi, Kazuhiro Ito, Naoki Ikeda, Akihiko Ohi

2.発表標題

Characteristic of flexible ReRAM with Al203/TiO2 active layer by ALD and PDA process at low temperature

3 . 学会等名

Pacific Rim Meeting on Electrochemical and Solid-State Science 2020 (PRiME 2020)(国際学会)

4. <u></u>発表年 2020年

Riku Kobayashi, Toshihide Nabatame, Takahsi Onaya, Akihiko Ohi,Naoki Ikeda, Takahiro Nagata, Kazuhito Tsukagoshi, Atsusi Ogura

2.発表標題

nfluence of Adsorbed 02 on The Gate-Bias Stress Stability of Back-Gate-Type TFT with Carbon-Doped In203 Channel

3 . 学会等名

33rd International Microprocesses and Nanotechnology Conference 2020(国際学会)

4 . 発表年

2020年

1. 発表者名

Takashi Onaya, Toshihide Nabatame, Mari Inoue, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Harrison Sejoon Kim, Naomi Sawamoto, Takahiro Nagata, Jiyoung Kim, Atsushi Ogura

2.発表標題

Possibility of Above 20-nm-Thick HfxZr1 - x02/Zr02 and HfxZr1 - x02/Hf02 Bilayers for High Polarization and Breakdown Voltage

3 . 学会等名

51th IEEE Semiconductor Interface Specialists Conference. 2020(国際学会)

4.発表年 2020年

1.発表者名

女屋 崇, 生田目 俊秀, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Harrison Sejoon Kim, 澤本 直美, 長田 貴弘, Jiyoung Kim, 小椋 厚志

2.発表標題

Study on Ferroelectric Switching Properties and Fatigue Mechanism of Low-Temperature Fabricated HfxZr1 - x02 Thin Films using Pulse Measurement

3 . 学会等名

第26回 電子デバイス界面テクノロジー研究会 - 材料・プロセス・デバイス特性の物理 - (EDIT26). 2021

4.発表年 2021年

1.発表者名

Takashi Onaya, Toshihide Nabatame, Naomi Sawamoto, Akihiko Ohi, Naoki Ikeda, Takahiro Nagata, Atsushi Ogura

2.発表標題

Control of ferroelectric phase formation in HfxZr1 - x02 thin films using nano-Zr02 nucleation layer technique

3 . 学会等名

MANA International Symposium 2021(国際学会)

4. <u>発</u>表年 2021年

女屋 崇, 生田目 俊秀, Yong Chan Jung, Heber Hernandez-Arriaga, Jaidah Mohan, Harrison Sejoon Kim, 澤本 直美, Chang-Yong Nam, Esther H. R. Tsai, 長田 貴弘, Jiyoung Kim, 小椋 厚志

2.発表標題

放射光X線による低温形成したHfxZr1-x02薄膜の直方晶相同定の検討

3.学会等名第68回応用物理学会春季学術講演会

4 . 発表年

2021年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	池田 直樹	国立研究開発法人物質・材料研究機構・技術開発・共用部 問・キチェンジェア	
研究分担者	(IKEDA NAOKI)		
	(10415771)	(82108)	
	大井 暁彦	国立研究開発法人物質・材料研究機構・技術開発・共用部 門・主任エンジニア	
研究分担者	(ОНІ АКІНІКО)		
	(20370364)	(82108)	
	塚越 一仁	国立研究開発法人物質・材料研究機構・ナノアーキテクトニ クス材料研究センター・グループリーダー	
研究分担者	(TSUKAGOSHI KAZUHITO)		
	(50322665)	(82108)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------