科学研究費助成事業

研究成果報告書

ふむ ん任 5 日 2 7 日現在

	A UH	U	3 / 3 = /	
機関番号: 82502				
研究種目: 基盤研究(C)(一般)				
研究期間: 2020 ~ 2023				
課題番号: 20K04007				
研究課題名(和文)直線偏光ガンマ線を用いた鉛原子核のピグミー共鳴の研究	究			
研究課題名(英文)Study of pygmy dipole resonances in lead isotopopes gamma-ray beam	s using	linearly	v polarized	
研究代表者				
静間 俊行(Shizuma, Toshiyuki)				
国立研究開発法人量子科学技術研究開発機構・関西光量子科学研究所・光	量子ビ -	・ム科学研	F究部・上席研	究員
研究者番号:5 0 2 8 2 2 9 9				
交付決定額(研究期間全体):(直接経費) 3,100,000円				
研究成果の概要(和文):準単色のレーザーコンプトン散乱ガンマ線や連続工	ネルギー	の制動放	射光を用いて	鉛

極子遷移の強度を求めた。また、準粒子フォノン模型を用いた理論計算では、実験から得られた離散的なE1遷移 強度をほぼ再現する結果が得られ、準連続状態を含む遷移強度を再現するためには、より高い励起状態との結合 を考慮する必要があることがわかった。また、励起エネルギー6.5~7.5MeVでは、核表面においてピグミー共鳴 に特徴的な振動運動モード、核内部では単一粒子励起に特徴的な振る舞いが現れることがわかった。

研究成果の学術的意義や社会的意義 原子核の低励起状態の遷移強度や多重極度を実験的に明らかにすることは、電気双極子(E1)遷移や磁気双極子 (M1)による正確な遷移強度を決定する上で重要である。特に、低励起エネルギーのE1励起準位は、ピグミー共鳴 とも呼ばれ、核表面に現れる中性子スキンと原子核コアとの相互作用に起因した集団運動によるものと考えられ ており、その微視的構造を明らかにすることにより、有限量子多体系である原子核の理解が進むものと考えられ る。さらに、ピグミー共鳴などの低エネルギー遷移の強度は、宇宙元素合成における核種の生成率に影響を与え ることからも、ピグミーE1共鳴について明らかにすることは重要である。

研究成果の概要(英文):Nuclear resonance fluorescence experiments of lead nuclei were performed using quasi-monochromatic laser Compton gamma rays and bremsstrahlung radiation. By measuring the intensity and angular distribution of scattered gamma rays, we obtained the dipole transition strengths for Pb-204 and Pb-206. In addition, theoretical calculations based on a quasiparticle phonon model that takes into account multiple phonon configurations were performed. The results reproduced the gross properties of the E1 strength. Analysis of the proton and neutron transition densities revealed that the low-lying E1 strength is due to both the collective neutron skin oscillation and the single-particle excitation. However, more complex configurations due to coupling of 1^- to multiphonon states which causes a fragmentation and a shift of the low-lying E1 strength toward lower energy were also observed.

研究分野:原子核物理学

キーワード: 原子核構造 電気双極子遷移強度 核共鳴蛍光散乱

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

中性子過剰な原子核では、低励起エネルギー(10MeV以下)に電気双極子(E1)遷移の総和則 の1~5%に相当する強度をもつピグミー共鳴(PDR)が観測されており、核表面に現れる中性子ス キンとの関連が指摘されている。中性子スキンの厚みは、核物質の対称エネルギーを決定する重 要な物理量であり、電子散乱や陽子散乱などを用いた複数の異なる手法で評価されている。最近 では、陽子の前方非弾性散乱を用いた電磁相互作用によるE1応答の測定による中性子スキン厚 の評価や不安定核ビームを用いた中性子密度分布の直接測定が行われている。このように、中性 子スキンの測定は、様々な手法で広く研究が行われている課題である。一方、安定な鉛原子核 (²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb)も薄い中性子スキンを有していると考えられており、これらの原子 核に対して、正確なE1遷移の強度分布を求めることは、ピグミー共鳴の微視的メカニズムや中 性子スキンとの関連を明らかにする上で重要である。

2.研究の目的

本研究では、レーザーコンプトン散乱ガンマ線や制動放射光を用いて、安定な鉛原子核に対す る核共鳴蛍光散乱実験を行う。中性子放出のしきい値エネルギー以下の共鳴準位を励起し、放出 される散乱ガンマ線の測定を行う。得られた実験データの解析から、共鳴準位のスピンやパリテ ィを決定し、E1 遷移強度分布を求める。また、準粒子フォノン模型や乱雑位相近似模型などを 用いた理論計算を行い、ピグミー共鳴の微視的メカニズムや中性子スキンとの関連を明らかに する。

3.研究の方法

高エネルギー加速電子とレーザー光とのコンプトン散乱によって得られるレーザーコンプトン散乱ガンマ線を用いて核共鳴蛍光散乱実験を行った。レーザーコンプトン散乱ガンマ線は、単色性、偏光性やエネルギー可変性において優れた特徴をもつガンマ線ビームである。このようなガンマ線ビームを用いて、透過型の核共鳴蛍光散乱実験を行った。測定実験は、分子科学研究所のUVSOR 放射光施設で行った。蓄積リングの加速電子ビームと波長1.9mmのレーザービームを衝突させ、最大エネルギー5.6MeVのレーザーコンプトンガンマ線を生成した。直径3mm、長さ20mmの鉛コリメータを用いてエネルギー幅約5%に準単色化したレーザーコンプトン散乱ガンマ線を直径8mm、長さ5.3mmの²⁰⁶Pb 吸収標的に照射し、透過ガンマ線を直径8mm、長さ5.3mmの²⁰⁶Pb 吸収標的に照射し、透過ガンマ線を直径8mm、長さ5.3mmの²⁰⁶Pb の取標的が有る場合と無い場合の2つの測定で得られる散乱ガンマ線の強度比から、吸収の大きさを求めた。また、連続エネルギーをもつ制動放射光を用いた²⁰⁴Pb の核共鳴蛍光散乱実験データの解析により、双極子遷移の強度分布を求め、準粒子フォノン模型を用いた理論計算との比較から、²⁰⁴Pb の低エネルギーE1 共鳴の微視的メカニズムや中性子スキンとの関連を調べた。また、乱雑位相近似模型を用いた²⁰⁶Pb、²⁰⁷Pb、²⁰⁸Pb のE1 遷移強度の計算を行い、3p_{1/2}一粒子準位軌道と低エネルギーE1 強度の関連を調べた。

4.研究成果

(1)透過型の核共鳴蛍光散乱実験

通常の核共鳴蛍光散乱実験では、主に基底状態へ遷移する散乱ガンマ線を測定するため、励起 状態へ遷移する分岐ガンマ線がある場合、遷移強度が過少評価される可能性がある。一方、透過 型の核共鳴蛍光散乱実験では、ガンマ線ビー

ムを吸収標的に照射した後に、透過ガンマ線 を散乱標的に照射し、散乱標的から放出され る散乱ガンマ線を測定する。この場合、散乱 標的から放出される散乱ガンマ線の強度は、 吸収標的における共鳴吸収のため、吸収標的 が無い場合と比べて減少する。したがって、 共鳴吸収による減少の度合いを測定するこ とにより、共鳴準位への励起確率を求めるこ とができる。

図1に、²⁰⁶Pbに対する透過型の核共鳴蛍光 散乱実験から得られた散乱ガンマ線のエネ ルギースペクトルを示している。吸収標的が 有る場合と無い場合のスペクトルを、それぞ れ、赤線と黒線で示している。星印のピーク が²⁰⁶Pbの散乱ガンマ線である。強度の強い ピークほど、吸収による影響が大きくなって いることがわかる。得られた強度比を基に、

図1.吸収標的が無い場合(赤)と有る場合 (黒)の散乱ガンマ線のエネルギースペクト ル。上図にはその差を示している(青線)。 吸収の度合い Rを求めると、最も強度が強い 5037-keV 遷移に対して、R=0.58(7)となり、基底状 態への部分崩壊幅は 2.3eV となる。この値は、これまで報告されている 2.33(16)eV[1]とよく一 致する。観測されたその他の遷移についてもこれまでのデータと矛盾しない結果が得られてお り、今回の測定法を用いることにより、基底状態への全崩壊幅を決定することができることがわ かった。また、従来の散乱型の核共鳴蛍光散乱から得られる部分崩壊幅と合わせて、遷移の分岐 比を決定できる。

(2)²⁰⁴Pbの双極子遷移強度

図2に、制動放射光を用いた核共鳴蛍光散乱実験で得られた²⁰⁴Pbの散乱ガンマ線スペクトル を示している。このスペクトルの解析から、136の共鳴準位を確認した。また、散乱角90度と 127度に設置したGe検出器を用いて測定した散乱ガンマ線の角度分布の強度比*R*,は、双極子遷 移に対して*R*,=0.74、四重極遷移に対して*R*,=2.18となる。図3に測定結果を示しているが、計 算値との比較から、遷移の多重度(Δ/=1または2)を決定した。

図2.制動放射光を用いた核共鳴蛍光散 乱実験で得られた²⁰⁴Pbの散乱ガンマ線ス ペクトル。

図3.角度分布比の測定結果。制動放射 光を用いた核共鳴蛍光散乱実験で得られ た²⁰⁴Pbの散乱ガンマ線スペクトル。

また、散乱ガンマ線の強度から、基底状態への崩壊幅応を求めた。さらに、観測された双極子 遷移を全て E1 遷移と仮定し、換算 E1 遷移確率 B(E1)を求めた。図 4(a)に、実験結果を示してい る。本実験から、励起エネルギー8.327MeV までの全 B(E1)として、0.613(6) e²fm²が得られた。 この値は、TRK 総和則から得られる値の0.546(6)%に相当し、²⁰⁶Pb (0.79%)、²⁰⁷Pb (0.35%)、²⁰⁸Pb (1.01%)から得られている値と近い値になっている。さらに、核統計模型に基づく準連続領域の 共鳴準位からの遷移を考慮した解析から光吸収断面積を求めた。図 5 に、離散的な共鳴準位と準 連続領域の共鳴準位に基づく光吸収断面積を示している。励起エネルギーが高くなるに従い、離 散的な共鳴準位に基づく光吸収断面積と比較して、準連続領域の共鳴準位に基づく光吸収断面 積が増加していることがわかる。

図4.換算 E1 遷移確率 B(E1)の実験値(a) と計算値(b)の比較。

図5 離散的なガンマ線の解析から得られ た光吸収断面積(青)と準連続領域の共鳴 準位を考慮したデータ解析から得られた 光吸収断面積(赤)。

(3)理論計算との比較

準粒子フォノン模型と自己無撞着な密度汎 関数理論を用いて²⁰⁴Pbの励起準位に対する理 論計算を行った。本計算では、スピン・パリテ ィJ^{*}=1⁺,1⁻,2⁺,3⁻,4⁺,5⁻,6⁺,7⁻を有する3フォノ ンの配位までを考慮した。詳細は文献[2]に示 す。図4(b)に、換算E1 遷移確率の計算結果 を示している。全B(E1)は0.971 e²fm²となり、 実験値よりやや大きくなっている。特に、励起 エネルギー7MeV以上では、計算値が実験値よ り大きく、図5に示した準連続領域の準位の 寄与があることを示唆している。

図6に、準粒子フォノン模型を用いて計算 した光吸収断面積(青)を実験値と比較してい るが、準連続領域の共鳴準位を考慮した実験 値(赤)を再現できないことがわかった。そこ で、2フォノン状態の配位空間を約1MeV大き くした拡張型の準粒子フォノン模型計算を行 った。その結果、励起エネルギー9~10MeVの 1^{*}準位に強い分散が現れ、E1 吸収断面積が2 倍程度増加することがわかった。このことは、

図6.離散的なガンマ線の解析から得られた 光吸収断面積(黒)と準連続領域の共鳴準位 を考慮したデータ解析から得られた光吸収 断面積(赤)。準粒子フォノン模型(青)と 拡張型準粒子フォノン模型(緑)を用いて計 算した光吸収断面積。

巨大 E1 共鳴の低エネルギー成分が E1 強度へ寄与していることを示唆しており、より高い励起 準位との結合が重要であることを示唆している。

また、²⁰⁴Pb の励起エネルギー約 10 MeV 以上と 6.5~7.5 MeV の準位に対する陽子と中性子の 遷移密度分布の計算結果を図 7 に示している。図 7 (左)では、巨大 E1 共鳴で現れる陽子コア と中性子コアが逆位相で振動する様子が示されている。一方、図 7 (右)では、ピグミー共鳴で 特徴的な核表面での中性子スキンによる振動とともに、核内部では単一粒子励起に特徴的な振 る舞いが示されている。

図7.励起エネルギー約10 MeV 以上(左)と6.5~7.5 MeV(右)の準位に対する陽子と中性 子の遷移密度分布。それぞれ、巨大共鳴(GDR、左図)とピグミー共鳴(PDR、右図)に対応する。

図8に、SkM*相互作用を用いた乱雑位 相模型計算による²⁰⁶Pb、²⁰⁷Pbと²⁰⁸PbのE1 遷移強度分布を示している。²⁰⁷Pbと²⁰⁸PbのE1 に対しては、3p_{1/2}軌道の一粒子エネルギ ーを1~10MeV変化させており、変化量に 従い、ピグミー共鳴に対応するE1強度の ピークが高エネルギー側から低エネルギ ー側へ移動し、強度も徐々に増加するこ とがわかった。このことから、3p_{1/2}軌道の ずれが大きくなり空間的に広がると、低 エネルギーE1強度も増加し、これまでの 測定結果と矛盾しない結果が得られるこ とがわかった。

図8.SkM*相互作用を用いた乱雑位相模型計算 による²⁰⁶Pb、²⁰⁷Pbと²⁰⁸PbのE1 遷移強度分布。

T.Shizuma et al, Phys. Rev. C 98, 064317 (2018).
 T.Shizuma et al, Phys. Rev. C 106, 044326 (2022).

5.主な発表論文等

〔雑誌論文〕 計10件(うち査読付論文 10件/うち国際共著 1件/うちオープンアクセス 3件) 4.巻 1.著者名 Shizuma T., Omer M., Hayakawa T., Minato F., Matsuba S., Miyamoto S., Shimizu N., Utsuno Y. 109 2.論文標題 5 . 発行年 Parity assignment for low-lying dipole states in 58Ni 2024年 3. 雑誌名 6.最初と最後の頁 Physical Review C 14302 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.1103/PhysRevC.109.014302 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難 1.著者名 4.巻 Ohgaki Hideaki, Ali Khaled, Kii Toshiteru, Zen Heishun, Hayakawa Takehito, Shizuma Toshiyuki, 26 Fujimoto Masaki, Taira Yoshitaka 5 . 発行年 2 . 論文標題 Generation of flat-laser Compton scattering -ray beam 2023年 3 . 雑誌名 6.最初と最後の頁 Physical Review Accelerators and Beams 93402 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.1103/PhysRevAccelBeams.26.093402 有

オープンアクセス

オープンアクセスではない、又はオープンアクセスが困難

1.著者名	4.巻
Taira Yoshitaka、Endo Shunsuke、Kawamura Shiori、Nambu Taro、Okuizumi Mao、Shizuma Toshiyuki、	107
Omer Mohamed, Zen Heishun, Okano Yasuaki, Kitaguchi Masaaki	
2.論文標題	5 . 発行年
Measurement of the spatial polarization distribution of circularly polarized gamma rays	2023年
produced by inverse Compton scattering	
3. 雑誌名	6.最初と最後の頁
Physical Review A	63503
掲載論文のD0 (デジタルオプジェクト識別子)	査読の有無
10.1103/PhysRevA.107.063503	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

国際共著

1.著者名	4.巻
Omer Mohamed、Shizuma Toshiyuki、Hajima Ryoichi、Koizumi Mitsuo	198
2.論文標題	5 . 発行年
Calculating off-axis efficiency of coaxial HPGe detectors by Monte Carlo simulation	2022年
3. 雑誌名	6.最初と最後の頁
Radiation Physics and Chemistry	110241 ~ 110241
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1016/j.radphyschem.2022.110241	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 Nakamura Shoji、Shibahara Yuji、Kimura Atsushi、Endo Shunsuke、Shizuma Toshiyuki	4.巻 60
2 . 論文標題 Neutron capture cross-section measurement by mass spectrometry for Pb-204 irradiated in JRR-3	5 . 発行年 2023年
3.雑誌名 Journal of Nuclear Science and Technology	6 . 最初と最後の頁 1~10
掲載論文のDOI(デジタルオブジェクト識別子) 10.1080/00223131.2023.2172088	 査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著
1.著者名 Shizuma T.、Endo S.、Kimura A.、Massarczyk R.、Schwengner R.、Beyer R.、Hensel T.、Hoffmann H.、Junghans A.、Romer K.、Turkat S.、Wagner A.、Tsoneva N.	4.巻 106
2 . 論文標題 Low-lying dipole strength distribution in Pb-204	5 . 発行年 2022年
3.雑誌名 Physical Review C	6.最初と最後の頁 044326-1~11
掲載論文のDOI(デジタルオプジェクト識別子) 10.1103/PhysRevC.106.044326	査読の有無有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著 該当する
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki , Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa	4.巻 11
 著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 	4.巻 11 5.発行年 2021年
 著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3. 雑誌名 Applied Sciences 	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866
 著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 雑誌名 Applied Sciences 掲載論文のDOI(デジタルオプジェクト識別子) 10.3390/app112411866 	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866 査読の有無 有
 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI(デジタルオプジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセスとしている(また、その予定である) 	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866 査読の有無 有 国際共著 -
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI(デジタルオプジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセスとしている(また、その予定である)	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866 査読の有無 有 国際共著 -
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI(デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス オープンアクセス 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866 査読の有無 有 国際共著 - 4 . 巻 11
 著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 雑誌名 Applied Sciences 掲載論文のDOI(デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス オープンアクセスとしている(また、その予定である) 1. 著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2. 論文標題 Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence 	 4.巻 11 5.発行年 2021年 6.最初と最後の頁 11866 査読の有無 有 国際共著 - 4.巻 11 5.発行年 2021年
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI(デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス オープンアクセス 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2.論文標題 Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence 3.雑誌名 Applied Sciences	 4.巻 11 5.発行年 2021年 6.最初と最後の頁 11866 査読の有無 有 国際共著 - 4.巻 11 5.発行年 2021年 6.最初と最後の頁 3415
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI(デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス パープンアクセス 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2.論文標題 Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence 3.雑誌名 Applied Sciences	4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 11866 査読の有無 有 国際共著 - 4 . 巻 11 5 . 発行年 2021年 6 . 最初と最後の頁 3415
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2. 論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3. 雑誌名 Applied Sciences 増戦論文のDOI (デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス オープシアクセスとしている(また、その予定である) 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2.論文標題 Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence 3.雑誌名 Applied Sciences	 4.巻 11 5.発行年 2021年 6.最初と最後の頁 11866 査読の有無 有 国際共著 - 4.巻 11 5.発行年 2021年 6.最初と最後の頁 3415 査読の有無 有
1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Masahiro Katoh, Yoshitaka Taira, Masaki Fujimoto, Hiroyuki Toyokawa 2.論文標題 Fusion Visualization Technique to Improve a Three-Dimensional Isotope-Selective CT Image Based on Nuclear Resonance Fluo-rescence with a Gamma-CT Image 3.雑誌名 Applied Sciences 掲載論文のDOI (デジタルオブジェクト識別子) 10.3390/app112411866 オープンアクセス オープンアクセス パープンアクセス 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2.論文標題 1.著者名 Khaled Ali, Heishun Zen, Hideaki Ohgaki, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masaki Fujimoto, Yoshitaka Taira, Masahiro Katoh 2.論文標題 Three-Dimensional Nondestructive Isotope-Selective Tomographic Imaging of 208Pb Distribution via Nuclear Resonance Fluorescence 3.雑誌名 Applied Sciences 掲載論文のDOI (デジタルオブジェクト識別子) 10.3390/app11083415 オーブンアクセス	 4.巻 11 5.発行年 2021年 6.最初と最後の頁 11866 査読の有無 有 国際共著 - 4.巻 11 5.発行年 2021年 6.最初と最後の頁 3415 査読の有無 有 国際共著

1.著者名 Ali Khaled、Ohgaki Hideaki、Zen Heishun、Kii Toshiteru、Hayakawa Takehito、Shizuma Toshiyuki、 Toyokawa Hiroyuki、Taira Yoshitaka、Iancu Violeta、Turturica Gabriel、Ur Calin Alexandru、 Fujimoto Masaki、Katoh Masahiro	4.巻 67
2.論文標題	5.発行年
Selective Isotope CT Imaging Based on Nuclear Resonance Fluorescence Transmission Method	2020年
3. 雑誌名	6.最初と最後の頁
IEEE Transactions on Nuclear Science	1976 ~ 1984
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1109/tns.2020.3004565	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	-

1.著者名	4.巻
Hayakawa Takehito、Toh Yosuke、Kimura Atsushi、Nakamura Shoji、Shizuma Toshiyuki、Iwamoto	103
Nobuyuki、Chiba Satoshi、Kajino Toshitaka	
2.論文標題	5 . 発行年
Isomer production ratio of the Cd112(n,)Cd113 reaction in an s-process branching point	2021年
3.雑誌名	6.最初と最後の頁
Physical Review C	45801
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1103/PhysRevC.103.045801	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計18件(うち招待講演 1件/うち国際学会 0件)

1.発表者名 静間俊行, Mohamed Omer, 早川岳人, 湊太志, 松葉俊哉, 宮本修治, 清水則孝, 宇都野穣

2.発表標題

58Niの低励起状態の双極子強度分布

3.学会等名 日本原子力学会2023年秋の年会

4 . 発表年 2023年

1.発表者名 大垣英明, 谷崎進也, 紀井俊輝, 全炳俊, 早川岳人, 静間俊行, 平義隆

2 . 発表標題

UVSOR BL1Uビームラインにおける複数同位体イメージングExperimental Study on Multi-Isotope Imaging in UVSOR BL1U LCS Beamline

3 . 学会等名

日本原子力学会2024年春の年会

4.発表年 2024年

静間俊行, M. Omer, 早川岳人, 湊太志, 松葉俊哉, 宮本修治, 清水則孝, 宇都野穣

2.発表標題

レーザーコンプトンガンマ線を用いた58Niの核共鳴蛍光散乱実験

3.学会等名日本物理学会2024年春季大会

4.発表年

2024年

1.発表者名

谷崎進也, 大垣英明, 紀伊俊輝, 全炳俊, 早川岳人, 静間俊行, 平義隆

2.発表標題

UVSOR におけるF-LCS ガンマ線ビーム発生に関する研究 実験 GENERATION OF FLAT-LASER COMPTON SCATTERING GAMMA-RAY BEAM IN UVSOR: Experimental Study

3 . 学会等名

日本原子力学会2023年秋の大会

4.発表年 2023年

1.発表者名

Mohamed Omer, Shizuma Toshiyuki, Koizumi Mitsuo, Taira Yoshitaka, Zen Heishun, Hajima Ryoichi

2.発表標題

Investigating effects of coaxial HPGe Detector structure on the measurement of LCS -ray beam

3 . 学会等名

日本原子力学会2023年秋の大会

4.発表年

2023年

1. 発表者名 静間 俊行, 遠藤駿典, 木村敦, R.Massarczyk, R.Schwengner, R.Beyer, T.Hensel, H.Hoffmann, A.Junghans, T.Romer, S.Turkat, A.Wagner

2.発表標題

制動放射光を用いた204Pbの双極子強度分布の測定

3 . 学会等名

日本物理学会2023年春季大会

4.発表年 2023年

Mohamed Omer, Shizuma Toshiyuki, Hajima Ryoichi, Mitsuo Koizumi

2.発表標題

Spectral Density of LCS Gamma-ray Source Accurately Measured

3.学会等名 日本核物質管理学会(INMMJ)第43回年次大会

4.発表年 2022年

2022-

1.発表者名 中村 詔司, 木村 敦, 遠藤 駿典, 芝原 雄司, 静間 俊行

2.発表標題

マススペクトロメトリーによる鉛204の中性子捕獲断面積測定

3.学会等名

日本原子力学会2022年秋の大会

4.発表年 2022年

1.発表者名

平義隆、杉田健人、岡野泰彬、平出哲也、遠藤駿典、全炳俊、静間俊行

2.発表標題

UVSOR-IIIにおけるガンマ線源開発と利用研究

3.学会等名

第19回日本加速器学会年会

4.発表年 2022年

1.発表者名

Mohamed Omer, Shizuma Toshiyuki, Hajima Ryoichi, Mitsuo Koizumi, Yoshitaka Taira

2.発表標題

Evaluating Coaxial HPGe Detector Efficiency in Beam Geometry Using LCS -ray Source

3 . 学会等名

日本原子力学会2022年秋の大会

4 . 発表年 2022年

静間 俊行, 遠藤駿典, 木村敦, R.Schwengner, R.Beyer, T.Hensel, H.Hoffmann, A.Junghans, A.Wagner, N.Tsoneva

2.発表標題 Pb-204の双極子励起の強度分布

3.学会等名 日本原子力学会2022年秋の大会

4.発表年 2022年

1.発表者名

早川岳人, 静間俊行, 飯塚毅

2.発表標題 宇宙核時計Lu-176の半減期(II)

3.学会等名日本物理学会 2022年秋季大会

4.発表年

2022年

1.発表者名

大垣 英明, Khaled Ali, 紀井 俊輝, 全 炳俊, 早川 岳人, 静間 俊行, 平 義隆, 藤本 將輝

2.発表標題

GENERATION OF FLAT-LASER COMPTON SCATTERING GAMMA-RAY BEAM IN UVSOR: Experimental Study

3.学会等名 日本国乙力学会2022年表

日本原子力学会2023年春の年会

4.発表年 2023年

1.発表者名 遠藤 駿典, 安部 亮太, 石崎 貢平, 伊東 佑起, 奥 隆之, 奥平 琢也, Omer Mohamed, 亀田 健斗, 河村 しほり, 北口 雅暁, 木村 敦, 酒井 健二, 静間 俊行, 嶋 達志, 清水 裕彦, 杉田 健人, 全 炳俊, 平 義隆, 高田 秀佐, 広田 克也, 藤家 拓大, 藤岡 宏之, 吉岡 瑞樹, 吉川 大幹

2.発表標題

中性子捕獲反応により生じるガンマ線の円偏光度測定のためのポラリメータの開発

3 . 学会等名

日本物理学会第77回年次大会

4.発表年 2022年

静間 俊行, 遠藤 駿典, 木村 敦, R. Schwengner, R. Beyer, T. Hensel, H. Hoffmann, A. Junghans, T. Romer, S. Turkat, A. Wagner

2.発表標題

制動放射光を用いたPb-204の核共鳴蛍光散乱実験

3.学会等名 日本原子力学会2021年秋の大会

4.発表年 2021年

1.発表者名 宮本修治

2 . 発表標題

NewSUBARU レーザー・コンプトン散乱ガンマ線光源

3 . 学会等名

第35回日本放射光学会年会・放射光科学合同シンポジウム(招待講演)

4.発表年 2022年

1.発表者名

Khaled Ali, Hideaki Ohgaki, Heishun Zen, Toshiteru Kii, Takehito Hayakawa, Toshiyuki Shizuma, Hiroyuki Toyokawa, Masahiro Katoh, Masaki Fujimoto, Yoshitaka Taira

2.発表標題

Three-Dimensional Nondestructive Isotope-Selective Tomo-graphic Imaging of 208Pb distribution via Nuclear Resonance Fluorescence

3 . 学会等名

日本原子力学会2021年春の年会

4.発表年

2021年

1.発表者名 早川 岳人, 川瀬 啓悟, 静間 俊行, 羽島 良一, コーガ ジェームズ, 全 炳俊, 紀井 俊輝, 大垣 英明, 藤本 將輝, 加藤 政博

2.発表標題

レーザーコンプトン散乱 線によるデルブリュック散乱の計測日

3 . 学会等名

日本物理学会第75回年次大会

4.発表年 2020年 〔図書〕 計0件

〔産業財産権〕

〔その他〕

6 . 研究組織

_

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	室本 修治	兵庫県立大学・高度産業科学技術研究所・特任教授	
研究分担者	(Miyamoto Shuji)		
	(90135757)	(24506)	
	稻倉 恒法	東京工業大学・科学技術創成研究院・研究員	
研究分担者	(Inakura Tsunenori)		
	(20436249)	(12608)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

相手方研究機関