研究成果報告書 科学研究費助成事業

今和 5 年 6月 9 日現在 機関番号: 82645 研究種目: 基盤研究(C)(一般) 研究期間: 2020~2022 課題番号: 20K04612 研究課題名(和文)多様なBOX層構造を有するSOIデバイスのシングルイベント現象に関する研究 研究課題名(英文)Degradation mechanism of Single Event tolerance on SOI devices having abnormal BOX layer structure 研究代表者 坂本 敬太 (Sakamoto, Keita) 国立研究開発法人宇宙航空研究開発機構・研究開発部門・研究開発員

研究者番号:60867985

交付決定額(研究期間全体):(直接経費) 3.300.000円

研究成果の概要(和文): BOX層構造に異常があることに起因したSOI-SRAMチップのシングルイベント耐性劣化の要因を、ナノプローブ測定による電流・電圧特性と半導体デバイスシミュレーションにより明らかにした。 ナノプローブ測定の結果、シングルイベント耐性が劣化したサンプルは整流作用があるダイオードが寄生的に作りこまれていた。この寄生ダイオードを介して放射線によってデバイス内部に生成された電子・正孔対の収集量 が増加するため、結果としてドレイン電流が大きくなる傾向があることを半導体デバイスシミュレーションで示 した。

これらの結果から、BOX層構造の異常に起因する電気的特性および放射線影響への影響を明らかにした。

研究成果の学術的意義や社会的意義 B01層を有するS01基板は放射線に対する構造的な利点があることから宇宙用部品の材料として採用され、宇宙 用の耐放射線設計と併用して利用されてきたが、B0X層の出来栄えによって放射線耐性が悪化する事象があっ た。本研究の結果、劣化の要因を明らかにすることが出来た。加えて、放射線試験を実施せずに、単純な電気的 特性を取得するだけでその劣化要因の有無を識別することが出来ることを示した。

研究成果の概要(英文): The cause of single event tolerance degradation on an SOI-SRAM device having an abnormal BOX layer structure has been clarified by conducting both nanoprobe measurements and semiconductor device simulation (TCAD). The current-voltage characteristics obtained from nanoprobe measurements have clearly indicated that parasitic diodes, having a rectification characteristic are fabricated at the BOX/Si-substrate interface. Furthermore, the results of TCAD simulation suggests that numerous electron-hole pairs generated in the SRAM device could be collected to the drain contact via the parasitic diode and consequently, the huge drain current flows in the device.

These results imply that simple current-voltage measurement for a BOX layer region can identify the devices, having degradation of single event tolerance.

研究分野:半導体デバイスの放射線影響

キーワード:シングルイベント効果 BOX層 SOI基板

様 式 C-19、F-19-1、Z-19(共通)

1. 研究開始当初の背景

集積回路(LSI)等の半導体デバイスはロケット・人工衛星等の宇宙機の処理能力を決定づける ものである。LSI は CMOS 回路で構成されているが、CMOS 回路は宇宙空間に存在する放射線 が入射することで誤動作することが知られている。これをシングルイベント現象と呼ぶ。誤動作 は、放射線が半導体に入社することによって生じた電子・正孔対が内部電界に従って移動した結 果として生じる過渡電流によって発現するため、絶縁層(BOX 層)を有する SOI 基板を使用する ことによって頻度を軽減できることが知られている。SOI 基板の利点は BOX 層を有する点であ るが、今日では、微細化による BOX 層の薄膜化に伴って BOX 層が意図せず破壊あるいは除去 される不良によりシングルイベント耐性が劣化し、SOI 基板にも関わらず放射線環境で誤動作 が高頻度で発生することが懸念される。

2. 研究の目的

本研究では、BOX 層の構造による電子・正孔対の収集メカニズムを解明することを目的とす る。これにより電気的測定(電流・電圧測定)によってシングルイベント耐性を予測するスクリー ニング手法の構築と、BOX 層構造に依存しないシングルイベント耐性強化設計技術の構築に貢 献する。

研究の方法

(a) BOX 層構造の異なる領域の識別

製造プロセスのばらつきを利用してチップ内部で BOX 層構造にばらつきを持たせた SRAM チッ プを準備し、当該チップに対してパルスレーザ照射試験を実施して SRAM ビットセル毎の反転断 面積を取得する。反転断面積は放射線に感応する領域のことであり、放射線耐性を決定づけるパ ラメータの1 つである。続いて反転断面積が大きいセルの断面観察を実施して、放射線耐性と BOX 層構造との関連性を見極める。

(b) 電気的特性の取得

パルスレーザ照射で取得した反転断面積の異なるセルが密集する領域の金属配線層を除去し てトランジスタ層をむき出しにし、ナノプローブ測定を実施して BOX 層の電流電圧特性を取得 する。得られた電流電圧特性のデータと反転断面積との結果とを突き合わせることで、放射線耐 性と電気的特性との相関関係の情報を取得する。

(c) シミュレーションを用いたメカニズム解明

取得した断面観察結果および電気的特性の情報を半導体デバイスシミュレータ (TCAD) にて 再現し、電気的特性と放射線耐性とを同時に再現可能なデバイス構造を構築する。これにより、 BOX 層異常が発生した場合のトランジスタ領域の構造に関する知見を獲得する。その後、構築し たデバイス構造に対して放射線照射シミュレーションを実施し、BOX 層構造に異常がある場合の 電子・正孔収集過程に関する知見を得る。

4. 研究成果

(a) BOX 層構造の異なる領域の識別

BOX 層構造の異なる SRAM チップに対して PULSCAN 製のパルスレーザ照射装置[1]を用いて照射 試験を実施し、SRAM チップ内部のビットセルの反転断面積を取得した。パルスレーザ照射試験 のコンフィギュレーションを図 1 にそれぞれ示す。1500 pJ/パルスのシングルフォトンのパル スレーザを 100 倍のレンズを通してチップ裏面から垂直に照射した。我々の試験系では 100 倍 のレンズにレーザを通して半値幅で直径を約 1.5 um に絞ることが可能である。このため、スキ ャニングのステップを 0.2 um として、照射位置をオーバーラップさせながら SRAM ビットセル 上の 100 um 角の領域をスキャンした。パルスレーザ照射試験の手順は次に示す通りとした。

- (1) SRAM に初期値を書き込む(All 0 または All 1)
- (2) 1500 pJのパルスレーザをチップ裏面から1回照射
- (3) SRAMの値を読み込み、エラーが発生したビットセルを記録
- (4) 上記(1)から(3)の手順を、照射位置を 0.2 um ずつ移動させながら繰り返し実施

ペルスレーザ照射試験の結果を図 2 に示す。図 2 の縦軸に示している"Error locations" は、エラーが発生した照射位置の合計数である。すなわち縦軸が大きいビットセルであるほど、 反転断面積が大きいセルと言い換えることができる。試験の結果、Error locationsの数値には ばらつきがみられた。これより、製造ばらつきに起因して異なる反転断面積の SRAM ビットセル が同一チップ上に形成されていることを確認できた。反転断面積が小さいセルでは 0 回 (エラ 一無し)、大きいセルでは 50 から 100 回程度と、大きくばらつく結果となった。また、得られた 反転断面積の大小関係は書き込み値に大きく依存しない結果となった。これは、SRAM ビットセ ルが 2 対のインバータ回路をループさせた構成で値を保持する回路機構であることから、保持 データが変わったとしてもインバータの状態が左右で入れ替わるだけであるためと考えられる。

次にパルスレーザ照射試験で取得したこれらのビットセルの内、エラー発生回数が比較的高 めのセルを選別して断面観察を実施した。断面観察結果を図 3 に示す。断面観察の結果、高い エラー発生回数が得られたビットセル近傍の BOX 層では、一部の領域において製造中に意図せ ず開口が発生しており、コンタクトプラグが支持基板にまで到達していることが明らかとなっ た。この断面観察の結果から、BOX 層の消失が反転断面積の増加に影響していることが分かった。

(b) 電気的特性の取得

断面観察と並行して、パルスレーザ照射試験でエラーが観測されビットセル近傍の領域を除 膜加工してナノプローブ測定を実施した。BOX 層の上下方向に電圧を印加して電流電圧特性を測 定した。測定結果を図 4 (赤線)に示す。今回実施した測定電圧の範囲であった場合、BOX 層が 正常であれば電流は流れないはずであるが、図に示す通り電圧印加により電流が増加すること が確認された。また電流値は正電圧を印加した場合の方が負電圧を印加した場合と比較して大 きいことから、整流作用を持っていることを確認した。この結果から、BOX 層異常が発生した箇 所においてダイオードが形成されていることを明らかした。

(c) シミュレーションを用いたメカニズム解明

最後に、取得した断面観察像と電気的特性とを合わせこむよう、半導体デバイスシミュレーション(TCAD)で体系を構築した。構築した体系で実施した電気的特性のシミュレーション結果を図 4 (青線)に示す。電気的特性で整流作用を再現するためにコンタクトプラグ下部にダイオードを接続する構成とした。TCAD 体系に対して放射線入射のシミュレーションを実施した結果を図 5 に示す。t=1x10⁻¹² s から放射線照射を模擬した電荷をデバイス内部に付与した。BOX 層異

常を再現した体系の結果を赤線・BOX 層異常が無い場合の結果を青線で示した。両者ともにデバ イス内部に蓄積した電荷がドレイン端で収集された結果としてドレイン電流が過渡的に上昇す ることが確認できたが、最大到達電流値は、BOX 層に異常がある構造の方が約2倍程度大きく、 BOX 層構造の差異によって放射線耐性が変化することを示すことが出来た。

<引用文献>

[1] パルスレーザ照射装置 (https://www.pulscan.com/pages/pulsys.php)

5.主な発表論文等

- 〔雑誌論文〕 計0件
- 〔学会発表〕 計0件
- 〔図書〕 計0件
- 〔産業財産権〕

〔その他〕

6、研究組織

-

0			
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究分担者	竹内 浩造 (Takeuchi Kozo)	国立研究開発法人宇宙航空研究開発機構・研究開発部門・研 究開発員	
	(00870255)	(82645)	
研究分担者	新藤 浩之 (Shindou Hiroyuki)	国立研究開発法人宇宙航空研究開発機構・研究開発部門・主 幹研究開発員	
	(90870254)	(82645)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

相手方研究機関