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研究成果の概要（和文）：ヒトおよびマウスの様々な組織と細胞種から得られた大規模なRNA-seqデータを用い
て、高品質な遺伝子共発現ネットワークの生成を目的としたデータ処理ワークフローの包括的な評価を行った。
その結果、できるだけ多くのRNA-seqサンプルの収集、Upper Quartileの正規化、バッチ効果の修正が重要であ
ることが明らかになった。最適な処理ワークフローを使用することで、高品質の遺伝子発現データセットが得ら
れ、他のバイオインフォマティクス解析をサポートする事例を提供した。最後に、このヒトおよびマウスの遺伝
子発現と共発現データから新たな知見を見出せるよう共発現ネットワークのデータベースを作成している。

研究成果の概要（英文）：We used a large collection of RNA-seq data samples covering 68 human and 76 
mouse cell types and tissues to conduct a comprehensive evaluation of which data processing workflow
 results in the highest quality gene co-expression networks. Our results indicate that it is 
important to collect as many RNA-seq samples as possible. Second, researchers should use using Upper
 Quartile normalization and correct batch effects. Finally, in general Pearson’s correlation should
 be used, but in small datasets Spearman’s rank correlation might be preferable. We confirmed that 
using the optimized processing workflow, we obtained a high-quality gene expression dataset which 
can be used as a reference. We provided two illustrations of the use of our dataset as a reference 
to support other bioinformatics analyses. Finally, we are preparing a freely accessible gene 
co-expression database, which will allow users to inspect gene expression and co-expression in many 
human and mouse tissues and cell types.

研究分野： bioinformatics
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研究成果の学術的意義や社会的意義
Gene co-expression is widely used for the prediction of gene functions and regulatory mechanisms. We
 here showed how gene expression data can be processed to obtain high-quality co-expression values. 
This will contribute to improved bioinformatics analyses and new insights into gene regulation.

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に
ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。
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１．研究開始当初の背景 
Even though almost all cells inside our bodies contain the same genetic material, they 
develop into a variety of different cell types that conduct different functions inside 
our body, such as liver cells and brain cells. To a large extent, these different cell 
types and different functions are defined by the genes that are transcribed within 
each cell. Improving our understanding of the regulation and functions of genes is one 
of the key goals of biology. 
 
One approach for predicting gene regulation and function is to compare gene expression 
patterns under different conditions. Genes that tend to be expressed together are 
called “co-expressed”. Gene co-expression is an important concept in bioinformatics 
because it serves as a foundation for predicting gene functions and regulatory 
mechanisms. So far, many groups have studied gene co-expression patterns in many 
different organisms (reviewed in van Dam et al., Briefings in Bioinformatics, 2018).  
 
However, several open problems remain. First, previous studies have estimated gene co-
expression from gene expression data obtained from many different tissues and cell 
types merged together, ignoring the fact that co-expression patterns are different in 
different cell types. For researchers interested in – for example – macrophages, gene 
co-expression estimates based on data obtained from hepatocytes or neuron cells are 
not relevant. Instead, they are interested in gene co-expression patterns found in 
data of macrophages subjected to many different conditions. Such data would be suitable 
for making a macrophage-specific gene co-expression study. 
 
Second, gene expression data nowadays is typically obtained from genome-wide sequencing 
of RNA molecules (RNA-seq). This data is complex and requires a number of processing 
and normalization steps. However, it is not clear which data processing and 
normalization steps result in the most reliable gene expression and co-expression data. 
 
Finally, it is difficult to merge together RNA-seq datasets produced by different labs 
under different conditions, because of the presence of technical biases between them, 
which are referred to as “batch effects”. Without suitable treatment of batch effects, 
gene co-expression predictions could be heavily affected by these batch effects, thus 
reflecting technical sources of correlation of expression, rather than biological co-
expression. How to optimally treat these batch effects in order to get high-quality 
gene expression data and high-quality gene co-expression predictions remains an open 
question. 
 
In a previous collaborative study, I constructed the first cell type-specific co-
expression database, called Immuno-Navigator [Vandenbon et al., PNAS, 2016; 
https://genomics.virus.kyoto-u.ac.jp/immuno-navigator/]. However, the data in this 
database was based on somewhat old technology (microarrays), and covered only 19 human 
and 24 mouse cell types, limited to cell types of the immune system. Moreover, no 
comprehensive comparison of different data processing methods was performed. The 
current proposal aimed to address these issues. 
 
２．研究の目的 
The goals of this study were 1) to conduct a comprehensive evaluation of the effect of 
different data analysis steps (data normalization, batch effect correction, measure of 
correlation, downstream processing of gene co-expression estimates) on the quality of 
gene co-expression estimates, 2) to construct an open-access, freely available database 
of gene co-expression in many cell types in human and mouse, and 3) to provide clear 
guidelines to other researchers about data processing steps to improve their own co-
expression data. 
 
３．研究の方法 
(1) Preparation of a large collection of gene expression data 
I collected 8,796 human and 12,114 mouse RNA-seq samples from the European Nucleotide 
Archive (ENA). These samples were produced by 401 and 630 studies, and covered 68 human 
and 76 mouse cell types and tissues, respectively. This collection of data was merged 



into 2 large genome-wide datasets, one for human and one for mouse samples. Annotation 
data was prepared showing for each sample which cell type or tissue it was obtained 
from, and which study had generated it. The studies were used as proxies for batches, 
assuming that each study represents one batch. 
 
(2) Data normalization, batch effect correction, and correlation calculation 
The human and mouse datasets were normalized using six different normalization 
approaches: Trimmed Mean of M-values (TMM) [Robinson et al., Genome Biol., 2010], 
Counts per million (CPM) and Median (Med) [Dillies et al., Brief Bioinform, 2013, 
Abbas-Aghababazadeh et al., PLoS One, 2018], Upper Quartile (UQ) [Bullard et al., BMC 
Bioinformatics, 2010], Regularized Logarithm (RLog) [Love et al., Genome Biol, 2014], 
and Quantile [Ritchie et al., Nucleic Acids Res, 2015]. This resulted in 12 normalized 
datasets (6 for human and 6 for mouse data). Data was log-transformed. 
 
On the log-transformed data, I applied two batch effect correction methods: ComBat 
[Johnson et al., Biostatistics, 2007] and the removeBatchEffect function of the limma 
R package [Ritchie et al., Nucleic Acids Res, 2015]. As biological variable the cell 
types or tissues were used, and as batch variable the studies. In addition, we also 
considered using no batch correction (only a normalization step), and also batch effect 
correction using ComBat-seq which uses non-normalized RNA-seq data as input [Zhang et 
al., NAR Genom Bioinform, 2020]. This way, we obtained 25 human and 25 mouse datasets 
in total (6 normalizations x 4 batch corrections, and ComBat-seq without normalization). 
 
Finally, we estimated gene co-expression in each of the 25 human and 25 mouse datasets 
using two measures of correlation: Pearson’s correlation and Spearman’s rank 
correlation. These correlation estimates were calculated in the data of each cell type 
or tissue separately. Thus, for each cell type or tissue, we obtained 50 different 
genome-wide sets of gene co-expression values (50 different combinations of 
normalization, batch effect correction, and correlation measure). Each such set of 
genome-wide gene co-expression values can be regarded as a gene co-expression network. 
Since there were 144 cell types and tissues (68 human and 76 mouse) and 50 combinations, 
this resulted in 7,200 co-expression networks. In the next step, I evaluated and 
compared the quality of these genome-wide co-expression networks. 
 
(3) Evaluation and comparison of gene co-expression networks 
For each of the 7,200 co-expression networks, I calculated 8 measures of quality. For 
a detailed description, I refer to the corresponding publication [Vandenbon, PLoS One, 
2022]. In brief, the measures of quality are based on how well highly co-expressed 
genes resemble each other, in terms of known functions and DNA motifs in promoter 
regions. The 8 measures of quality were highly consistent, and were therefore processed 
into a single quality indicator, rescaled to be in the range of 0 (very low) to 1 (very 
high). Using linear regression analysis, I analyzed how much the following features 
contributed to a high/low quality: the number of RNA-seq samples, number of batches, 
normalization method, batch effect correction method, correlation measure, species 
(human or mouse). The findings are summarized in Table 1.  
 
All above processing and statistical analysis was done using the R programming language. 
 
(4) Applications of our processed dataset as a high-quality reference 
After identifying the optimal data processing combination (see above), we obtained a 
high-quality RNA-seq dataset, which can be used as a gene expression reference dataset. 
To further illustrate the usefulness of this dataset, we applied it to two additional 
studies. 
 
First, in one study we analyzed gene expression in mouse liver tissues using single-
cell (scRNA-seq) and spatial transcriptomics (10X Genomics Visium platform) [Vandenbon 
et al., Commun Biol, 2023], in control mice and breast cancer-bearing mice. We used 
our reference dataset to support cell type annotation and the analysis of gene co-
expression in different parts of the liver tissues.  
 
Second, we used our reference dataset to study differentially expressed genes. In one 
example, we used 1,958 mouse samples from different brain-related tissues to predict 
genes with different levels of expression [Vandenbon and Diez, bioRxiv, 2022]. 



 
(5) Database construction 
We are constructing a freely accessible gene co-expression database. We are using the 
optimally processed gene expression data for both human and mouse samples as input, as 
well as promoter sequences and functional annotations of genes. We are implementing 
the database using Flask, a web framework written in Python, and SQLite. 
 
 
４．研究成果 
(1) Evaluation and comparison of gene co-expression networks 
We used linear regression to evaluate how each aspect of data and processing steps 
contributes to the quality of the resulting gene co-expression networks (Table 1). For 
a detailed explanation I refer to the publication [Vandenbon, PLoS One, 2022]. Each 
aspect will be briefly discussed below. 
 
Table 1. Linear regression model of the co-expression network quality scores. The 
table summarizes a linear model of using co-expression quality scores as response 
variable. Predictors, their estimated coefficient, standard error, t value (= estimate 
divided by std. error) and p-value are shown. Qualitative predictors are grouped by 
species, normalization, batch effect correction and correlation measure. 

 Feature Estimate Std. Error t value Pr(>|t|) 

 (Intercept) -0.150 0.011 -13.9 5.1E-43 

 log10(sample count) 0.2894 0.0072 40.1 8.5E-295 

 log10(batch count) -0.0302 0.0081 -3.7 0.00019 

species human baseline 

mouse 0.0462 0.0035 13.3 3.0E-39 

normalization Quantile baseline 

Rlog 0.0231 0.0060 3.9 0.00012 

CPM 0.0318 0.0060 5.3 1.2E-07 

TMM 0.0540 0.0060 9.0 3.0E-19 

Med 0.0638 0.0060 10.7 3.9E-26 

UQ 0.0782 0.0060 13.1 3.4E-38 

batch effect 

correction 

no correction baseline 

removeBatchEffect 0.0412 0.0042 9.7 4.1E-22 

ComBat 0.0468 0.0042 11.1 5.4E-28 

correlation 

measure 

Pearson baseline 

Spearman -0.0107 0.0035 -3.1 0.0019 

 
 
First, the result suggests that the most important point is the number of RNA-seq 
samples on which the gene co-expression estimates are based. This was true for both 
mouse and human samples, and, moreover, the same result was found for any combination 
of data normalization and batch effect correction. However, the quality of co-
expression networks is roughly linearly related to the logarithm of the sample counts. 
This logarithmic trend means that an ever-increasing number of samples is needed to 
obtain the same improvements in quality. In practice, it is impossible to always 
collect thousands of RNA-seq samples. This means that it makes sense to optimize also 
other aspects, such as the normalization and batch effect correction steps. 
 
Next, the results suggest a clear difference in the quality caused by different 
normalization approaches. In particular, Upper Quartile (UQ) performed well. The use 
of UQ instead of Quantile normalization (used as baseline here) is roughly equivalent 
to an 86% increase in sample counts. UQ performed well not only on dataset with many 



samples, but also on datasets with few samples (not shown here). 
 
The analysis also suggested that the quality of the co-expression networks is negatively 
related to the number of batches. In other words, keeping all other variables constant, 
the quality of co-expression estimates is expected to decrease if the underlying gene 
expression data was obtained from many different studies. This reflects the existence 
of batch effects. Indeed, treating batch effects using the removeBatchEffect or ComBat 
approaches lead in general to an improvement in quality, especially in larger datasets 
containing data obtained from many studies (i.e., many batches). However, this was 
less the case for the ComBat-seq approach, which resulted in lower quality (not shown 
here). 
 
Finally, we observed that the use of Pearson’s correlation resulted in a slightly 
higher average quality score compared to Spearman’s rank correlation. However, 
Spearman’s rank correlation performed better than Pearson’s correlation on datasets 
with few samples (i.e., datasets with < 30 samples; not shown here). 
 
(2) General guidelines for obtaining high-quality gene co-expression data 
Taken together, the linear regression analysis of a large number of workflows suggests 
the following guidelines for obtaining high-quality gene co-expression estimates: 1) 
researchers should attempt to collect as many RNA-seq samples as possible. 2) In 
general, Upper Quartile (UQ) normalization resulted in high-quality networks. 3) Batch 
effects should be corrected using – by preference – ComBat. 4) Finally, Pearson’s 
correlation is in general to be preferred, but on smaller datasets (< 30 samples) 
Spearman’s rank correlation is in general better. 
 
(3) Applications of our processed dataset as a high-quality reference 
Through the optimization of the workflow, we have obtained a high-quality gene 
expression dataset, covering a wide variety of cell types and tissues in human and 
mouse. Such a dataset is valuable as a reference. We illustrated this through two 
applications. In one study, we used our dataset to support the analysis of single-cell 
and spatial transcriptomics analysis of liver tissues [Vandenbon et al., Commun Biol, 
2023]. Our dataset was used to annotated cell types in single-cell data, and for 
dissecting spatial expression patterns in the spatial transcriptomics data. In a second 
study, we used our reference dataset to successfully predict differentially expressed 
genes in various brain-related samples [Vandenbon and Diez, bioRxiv, 2022]. 
Traditionally, such analysis has been difficult because of small samples numbers and 
the existence of batch effects. However, here we could leverage the large amounts of 
samples in our reference data, as well as its high quality. 
 
(4) A high-quality cell type-specific gene co-expression database 
Finally, we are implementing a freely accessible gene co-expression database, which 
allows users to search for genes of interest, and visualize their expression and co-
expression in the data obtained from the 68 human and 76 mouse cell types and tissues 
(Fig. 1). This database will be made freely accessible as soon as possible. 
 

 
 

Figure 1: Example usage of the 
gene co-expression database. (A) 
Visualization of the expression 
levels of Foxp3 in mouse cell 
types. Indicated is the high 
expression in Tregs. (B) Genes 
with high correlation of 
expression with Foxp3 in Tregs. 
(C) A small co-expression 
network of Foxp3. (D) 
Scatterplot showing high 
correlation of expression 
between Foxp3 and Il2rb in Treg-
derived samples. Several other 
functions are being implemented 
(not shown here). 
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