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Gene co-expression is widely used for the prediction of gene functions and regulatory mechanisms. We
here showed how gene expression data can be processed to obtain high-quality co-expression values.
This will contribute to improved bioinformatics analyses and new insights into gene regulation.

We used a large collection of RNA-seq data samples covering 68 human and 76

mouse cell types and tissues to conduct a comprehensive evaluation of which data processing workflow
results in the highest quality gene co-expression networks. Our results indicate that it is
important to collect as many RNA-seq samples as possible. Second, researchers should use using Upper
Quartile normalization and correct batch effects. Finally, in general Pearson’ s correlation should
be used, but in small datasets Spearman’ s rank correlation might be preferable. We confirmed that
using the optimized processing workflow, we obtained a high-quality gene expression dataset which
can be used as a reference. We provided two illustrations of the use of our dataset as a reference
to support_other bioinformatics analyses. Finally, we are preparing a freely accessible gene
co-expression database, which will allow users to inspect gene expression and co-expression in many
human and mouse tissues and cell types.

bioinformatics

bioinformatics gene expression gene co-expression data normalization batch effect correct
ion database



Even though almost all cells inside our bodies contain the same genetic material, they
develop into a variety of different cell types that conduct different functions inside
our body, such as liver cells and brain cells. To a large extent, these different cell
types and different functions are defined by the genes that are transcribed within
each cell. Improving our understanding of the regulation and functions of genes is one
of the key goals of biology.

One approach for predicting gene regulation and function is to compare gene expression
patterns under different conditions. Genes that tend to be expressed together are
called “ co-expressed” . Gene co-expression is an important concept in bioinformatics
because it serves as a foundation for predicting gene functions and regulatory
mechanisms. So far, many groups have studied gene co-expression patterns in many
different organisms (reviewed in van Dam et al., Briefings in Bioinformatics, 2018).

However, several open problems remain. First, previous studies have estimated gene co-
expression from gene expression data obtained from many different tissues and cell
types merged together, ignoring the fact that co-expression patterns are different in
different cell types. For researchers interested in - for example - macrophages, gene
co-expression estimates based on data obtained from hepatocytes or neuron cells are
not relevant. Instead, they are interested in gene co-expression patterns found in
data of macrophages subjected to many different conditions. Such data would be suitable
for making a macrophage-specific gene co-expression study.

Second, gene expression data nowadays is typically obtained from genome-wide sequencing
of RNA molecules (RNA-seq). This data is complex and requires a number of processing
and normalization steps. However, it 1is not clear which data processing and
normalization steps result in the most reliable gene expression and co-expression data.

Finally, it is difficult to merge together RNA-seq datasets produced by different labs
under different conditions, because of the presence of technical biases between them,
which are referred to as “ batch effects” . Without suitable treatment of batch effects,
gene co-expression predictions could be heavily affected by these batch effects, thus
reflecting technical sources of correlation of expression, rather than biological co-
expression. How to optimally treat these batch effects in order to get high-quality
gene expression data and high-quality gene co-expression predictions remains an open
question.

In a previous collaborative study, | constructed the first cell type-specific co-
expression database, called Immuno-Navigator [Vandenbon et al., PNAS, 2016;
https://genomics.virus.kyoto-u.ac.jp/immuno-navigator/]. However, the data in this
database was based on somewhat old technology (microarrays), and covered only 19 human
and 24 mouse cell types, limited to cell types of the immune system. Moreover, no
comprehensive comparison of different data processing methods was performed. The
current proposal aimed to address these issues.

The goals of this study were 1) to conduct a comprehensive evaluation of the effect of
different data analysis steps (data normalization, batch effect correction, measure of
correlation, downstream processing of gene co-expression estimates) on the quality of
gene co-expression estimates, 2) to construct an open-access, freely available database
of gene co-expression in many cell types in human and mouse, and 3) to provide clear
guidelines to other researchers about data processing steps to improve their own co-
expression data.

(1) Preparation of a large collection of gene expression data

I collected 8,796 human and 12,114 mouse RNA-seq samples from the European Nucleotide
Archive (ENA). These samples were produced by 401 and 630 studies, and covered 68 human
and 76 mouse cell types and tissues, respectively. This collection of data was merged




into 2 large genome-wide datasets, one for human and one for mouse samples. Annotation
data was prepared showing for each sample which cell type or tissue it was obtained
from, and which study had generated it. The studies were used as proxies for batches,
assuming that each study represents one batch.

(2) Data normalization, batch effect correction, and correlation calculation

The human and mouse datasets were normalized using six different normalization
approaches: Trimmed Mean of M-values (TMM) [Robinson et al., Genome Biol., 2010],
Counts per million (CPM) and Median (Med) [Dillies et al., Brief Bioinform, 2013,
Abbas-Aghababazadeh et al., PLoS One, 2018], Upper Quartile (UQ) [Bullard et al., BMC
Bioinformatics, 2010], Regularized Logarithm (RLog) [Love et al., Genome Biol, 2014],
and Quantile [Ritchie et al., Nucleic Acids Res, 2015]. This resulted in 12 normalized
datasets (6 for human and 6 for mouse data). Data was log-transformed.

On the log-transformed data, | applied two batch effect correction methods: ComBat
[Johnson et al., Biostatistics, 2007] and the removeBatchEffect function of the limma
R package [Ritchie et al., Nucleic Acids Res, 2015]. As biological variable the cell
types or tissues were used, and as batch variable the studies. In addition, we also
considered using no batch correction (only a normalization step), and also batch effect
correction using ComBat-seq which uses non-normalized RNA-seq data as input [Zhang et
al., NAR Genom Bioinform, 2020]. This way, we obtained 25 human and 25 mouse datasets
in total (6 normalizations x 4 batch corrections, and ComBat-seq without normalization).

Finally, we estimated gene co-expression in each of the 25 human and 25 mouse datasets
using two measures of correlation: Pearson’ s correlation and Spearman’ s rank
correlation. These correlation estimates were calculated in the data of each cell type
or tissue separately. Thus, for each cell type or tissue, we obtained 50 different
genome-wide sets of gene co-expression values (50 different combinations of
normalization, batch effect correction, and correlation measure). Each such set of
genome-wide gene co-expression values can be regarded as a gene co-expression network.
Since there were 144 cell types and tissues (68 human and 76 mouse) and 50 combinations,
this resulted in 7,200 co-expression networks. In the next step, | evaluated and
compared the quality of these genome-wide co-expression networks.

(3) Evaluation and comparison of gene co-expression networks

For each of the 7,200 co-expression networks, I calculated 8 measures of quality. For
a detailed description, | refer to the corresponding publication [Vandenbon, PL0S One,
2022]. In brief, the measures of quality are based on how well highly co-expressed
genes resemble each other, in terms of known functions and DNA motifs in promoter
regions. The 8 measures of quality were highly consistent, and were therefore processed
into a single quality indicator, rescaled to be in the range of 0 (very low) to 1 (very
high). Using linear regression analysis, 1 analyzed how much the following features
contributed to a high/low quality: the number of RNA-seq samples, number of batches,
normalization method, batch effect correction method, correlation measure, species
(human or mouse). The findings are summarized in Table 1.

All above processing and statistical analysis was done using the R programming language.

(4) Applications of our processed dataset as a high-quality reference

After identifying the optimal data processing combination (see above), we obtained a
high-quality RNA-seq dataset, which can be used as a gene expression reference dataset.
To further illustrate the usefulness of this dataset, we applied it to two additional
studies.

First, in one study we analyzed gene expression in mouse liver tissues using single-
cell (scRNA-seq) and spatial transcriptomics (10X Genomics Visium platform) [Vandenbon
et al., Commun Biol, 2023], in control mice and breast cancer-bearing mice. We used
our reference dataset to support cell type annotation and the analysis of gene co-
expression in different parts of the liver tissues.

Second, we used our reference dataset to study differentially expressed genes. In one
example, we used 1,958 mouse samples from different brain-related tissues to predict
genes with different levels of expression [Vandenbon and Diez, bioRxiv, 2022].



(5) Database construction

We are constructing a freely accessible gene co-expression database. We are using the
optimally processed gene expression data for both human and mouse samples as input, as
well as promoter sequences and functional annotations of genes. We are implementing
the database using Flask, a web framework written in Python, and SQLite.

(1) Evaluation and comparison of gene co-expression networks

We used linear regression to evaluate how each aspect of data and processing steps
contributes to the quality of the resulting gene co-expression networks (Table 1). For
a detailed explanation | refer to the publication [Vandenbon, PLoS One, 2022]. Each
aspect will be briefly discussed below.

Table 1. Linear regression model of the co-expression network quality scores. The
table summarizes a linear model of using co-expression quality scores as response
variable. Predictors, their estimated coefficient, standard error, t value (= estimate
divided by std. error) and p-value are shown. Qualitative predictors are grouped by
species, normalization, batch effect correction and correlation measure.

Feature Estimate | Std. Error | t value | Pr(C|t])
(Intercept) -0.150 0.011 -13.9 5.1E-43
logl0(sample count) 0.2894 0.0072 40.1 8.5E-295
logl0(batch count) -0.0302 0.0081 -3.7 0.00019
species human baseline
mouse 0.0462 0.0035 13.3 3.0E-39
normalization Quantile baseline
Rlog 0.0231 0.0060 3.9 0.00012
CPM 0.0318 0.0060 5.3 1.2E-07
T™MM 0.0540 0.0060 9.0 3.0E-19
Med 0.0638 0.0060 10.7 3.9E-26
uQ 0.0782 0.0060 13.1 3.4E-38
batch effect | no correction baseline
correction removeBatchEffect 0.0412 0.0042 9.7 4_.1E-22
ComBat 0.0468 0.0042 11.1 5.4E-28
correlation Pearson baseline
measure Spearman -0.0107 0.0035 -3.1 0.0019

First, the result suggests that the most important point is the number of RNA-seq
samples on which the gene co-expression estimates are based. This was true for both
mouse and human samples, and, moreover, the same result was found for any combination
of data normalization and batch effect correction. However, the quality of co-
expression networks is roughly linearly related to the logarithm of the sample counts.
This logarithmic trend means that an ever-increasing number of samples is needed to
obtain the same improvements in quality. In practice, it is impossible to always
collect thousands of RNA-seq samples. This means that it makes sense to optimize also
other aspects, such as the normalization and batch effect correction steps.

Next, the results suggest a clear difference in the quality caused by different
normalization approaches. In particular, Upper Quartile (UQ) performed well. The use
of UQ instead of Quantile normalization (used as baseline here) is roughly equivalent
to an 86% increase in sample counts. UQ performed well not only on dataset with many



samples, but also on datasets with few samples (not shown here).

The analysis also suggested that the quality of the co-expression networks is negatively
related to the number of batches. In other words, keeping all other variables constant,
the quality of co-expression estimates is expected to decrease if the underlying gene
expression data was obtained from many different studies. This reflects the existence
of batch effects. Indeed, treating batch effects using the removeBatchEffect or ComBat
approaches lead in general to an improvement in quality, especially in larger datasets
containing data obtained from many studies (i.e., many batches). However, this was
less the case for the ComBat-seq approach, which resulted in lower quality (not shown
here).

Finally, we observed that the use of Pearson’ s correlation resulted in a slightly
higher average quality score compared to Spearman’ s rank correlation. However,
Spearman’ s rank correlation performed better than Pearson’ s correlation on datasets
with few samples (i.e., datasets with < 30 samples; not shown here).

(2) General guidelines for obtaining high-quality gene co-expression data

Taken together, the linear regression analysis of a large number of workflows suggests
the following guidelines for obtaining high-quality gene co-expression estimates: 1)
researchers should attempt to collect as many RNA-seq samples as possible. 2) In
general, Upper Quartile (UQ) normalization resulted in high-quality networks. 3) Batch
effects should be corrected using - by preference - ComBat. 4) Finally, Pearson’ s
correlation is in general to be preferred, but on smaller datasets (< 30 samples)
Spearman’ s rank correlation is in general better.

(3) Applications of our processed dataset as a high-quality reference

Through the optimization of the workflow, we have obtained a high-quality gene
expression dataset, covering a wide variety of cell types and tissues in human and
mouse. Such a dataset is valuable as a reference. We illustrated this through two
applications. In one study, we used our dataset to support the analysis of single-cell
and spatial transcriptomics analysis of liver tissues [Vandenbon et al., Commun Biol,
2023]. Our dataset was used to annotated cell types in single-cell data, and for
dissecting spatial expression patterns in the spatial transcriptomics data. In a second
study, we used our reference dataset to successfully predict differentially expressed
genes in various brain-related samples [Vandenbon and Diez, bioRxiv, 2022].
Traditionally, such analysis has been difficult because of small samples numbers and
the existence of batch effects. However, here we could leverage the large amounts of
samples in our reference data, as well as its high quality.

(4) A high-quality cell type-specific gene co-expression database

Finally, we are implementing a freely accessible gene co-expression database, which
allows users to search for genes of interest, and visualize their expression and co-
expression in the data obtained from the 68 human and 76 mouse cell types and tissues
(Fig. 1). This database will be made freely accessible as soon as possible.
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We are preparing a freely accessible gene co-expression database now. We will make it public as soon as possible.




