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Reward occurence probability vector space that Visualizes the distribution of
whole learning results of multi-objective reinforcement learning

Yamaguchi, Tomohiro
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First, we implemented parallelization of the collection of all reward
acquisition policies and the determination of the multi-objective optimal policies, as well as
speeding up the process by partial computation. In a stochastic MDP environment with 12 states and 3

rewards, the number of reward acquisition policies was 253,000, while the number of reward
occurrence probability vectors was reduced to 5430, about 1/50. In the case of 4 rewards, the
parallelized method (8.8 sec) was 1/180th faster than the existing method (1590 sec) in terms of the
execution time required to calculate the set of occurrence probability vectors corresponding to all
reward acquisition policies. Next, for the case of 3 rewards, we used the mesh method to determine
the range of weight vectors among the objectives to optimize the multi-objective optimal policy, and
visualized the average reward of the optima policy for the weight vectors.
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