研究成果報告書 科学研究費助成事業

今和 6 年 5 月 1 3 日現在

機関番号: 1 5 5 0 1
研究種目: 基盤研究(C)(一般)
研究期間: 2020 ~ 2023
課題番号: 20K12239
研究課題名(和文)海水等の天然水を電解液資源として用いる自然エネルギーを想定した電解水素製造
研究課題名(英文)Electrolytic hydrogen production assuming natural energy using natural water such as seawater as electrolyte resource.
研究代表者
遠藤 宣隆(Endo, Nobutaka)
山口大学・大学院創成科学研究科・講師
研究者番号:4 0 3 1 4 8 1 9
父 何 决 正 韻 (妍 允 期 間 宝 仲) : (直 接 経 算) 3,300,000 円

研究成果の概要(和文):薄板型流路を持つ流通式電解槽を自作し、模擬海水として3.5wt% NaCl溶液を電解した。50ml/minで供給して行った電解において、出口濃度の塩素濃度は理論値の40~50%となり、残りの電気量は 出口溶液のpH変化から酸素生成に消費されたことが示された。これは電極近傍の溶液が流路部とは異なる流れと なり、そこへの反応物イオンの供給速度の差によると考えられた。印加電流および溶液の供給速度、そのセル要 素の配置による影響は、それを裏付けるものであった。この結果より、セルの構造や運転条件を変えることで、 海水電解であっても塩素/酸素の選択性、すなわち生成比率を変化させることができることが示された。

研究成果の学術的意義や社会的意義 今後の水素需要の増大には、それ単独で採算が取れるクリーンエネルギーによる水電解法の開発が不可欠であ る。海水および食塩の電解液資源利用は、入手容易性からコスト低減に大きく貢献する。しかし塩素は滅菌など に利用できるが、その腐食性・毒性から過剰な生産は望ましくない。本研究によって塩素生成量を自在に制御で きれば、滅菌剤として用いる塩素を現地で製造できる。これにより、安価な電解液資源の利用、自然水利用に必 要な滅菌剤の内部調達、腐食性や毒性のある副生物の過剰生産による処理費用の低減ができる。これは自然エネ ルギーの面積効率から、中規模になると予想される水素製造プラントでは、その貢献は大きいと考えられる。 ルギーの面積効率から、中規模になると予想される水素製造プラントでは、その貢献は大きいと考えられる。

研究成果の概要(英文):A flow-type electrolytic cell with a thin plate type flow path was prepared and electrolyzed a 3.5wt% NaCl solution as simulated seawater. In electrolysis performed at a supply rate of 50 ml/min, the chlorine concentration at the outlet was 40 to 50% of the theoretical value, and the remaining electricity was shown to be consumed for oxygen production from changes in the pH of the outlet solution. This was thought to be due to the flow of the solution near the electrodes being different from that of the flow path (bulk solution in the electrolytic cell), and the difference in the rate of supply of reactant ions there. The effects of applied current and solution supply rate, and the arrangement of cell elements, supported this. These results show that by changing the cell structure and operating conditions, it is possible to change the chlorine/oxygen selectivity, that is, the production ratio, even in seawater electrolysis.

研究分野: 電気化学

キーワード: 電解水素製造 海水電解 選択性制御 酸素 塩素

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

水素エネルギー社会の実現において、自然エネルギーを利用した低コストの水電解法開発が、現 在も求められている。しかし当時の水素は副成水素が多く、その価格は有価な主生成物の販売利益を 考慮した価格設定がされている。しかし将来求められる水素製造では、それ自体により利益を得る必 要があり、価格設定において非常に不利であり、さらなる大幅なコスト低減が求められる状況にある。

また、現行の電解で用いる電解液は高度な水処理と支持電解質(KOH 等)を用いるため、安価な 天然由来の電解液として、海水や湧水、河川水、下水処理水等の利用を考えた。特に NaCl は海水を 始めとした多様な水中に含まれており、安価に伝導度を付与できる優れた電解質で、コスト削減に大き く貢献できると考えられる。しかし NaCl 溶液はアノードから塩素を優先的に生成することが知られてい る。塩素自体は滅菌剤や種々の工業原料として利用できるものの、その需要は水素の需要に匹敵す るかは見通せず、加えて塩素の腐食性や毒性を考慮すると、多量の水素製造における副生物として は問題がある。しかし OH⁻は水中での拡散が非常に早く、条件によっては酸素選択性を大きく向上で きることが以前の研究で示された。そこで、主にセル構造を検討することで、拡散速度の速い OH⁻の 電極表面濃度を高め、NaCl 溶液でも酸素を優先的に生成する電解槽の構築を検討する。これにより、 天然由来の水を容易かつ低労力で電解液資源とし、各地に散在する自然エネルギー源(風力・太陽 光)に設置、不安定で利用しにくい電力の水素貯留・輸送によりエネルギー利用率の向上が期待でき る。

2.研究の目的

NaCl溶液を電解するとき、アノード側に生成する塩素と酸素の選択性について、塩素の選択性を下げることを想定し、以下の点を明らかにすることを目的とした。

1. 電解槽の形状および運転条件により酸素選択性を向上させることは可能か

電極反応の選択性は一般に、電極表面における活 性種の濃度と電極電位に依存する。アノード側の反 応は酸素および塩素の生成反応であり、活性種はそ れぞれ OH および Cl である。海水中では Cl 濃度 が OH 濃度より大幅に大きいため、塩素生成が優勢 となる。しかし、水中における移動度は OH⁻の方が遙 かに大きいため、反応活性種のイオン輸送(拡散輸 送)が律速となる場合は酸素生成が生じる。そこで供 給流量を下げて電極表面における溶液の流れを低 速で層流とし、電極反応速度が高い(=電流密度が 高い)条件とすることで、酸素生成の選択性を高める ことができる。電流密度の上昇は過電圧の増加につ ながり、電解効率は低下する(Fig. 1)。そこで本研究 では、電極とセルの形状・運転条件の変化と消費電 力や出口の pH、Cl2/O2 生成量との関係を評価・検討 し、Cl₂ 生成を始めとした副反応の速度を制御するこ とを検討した。

2. 低流量の流通式電解槽において、槽内における局所的な濃度変化の影響はどの程度か

一般的な水電解槽では、タンクの水を電解槽に 供給のみ行うタイプがある(Fig. 2 上)。この場合は 排出口がないため、電解による水の消費と水の補 充による不純物の追加供給により溶液中に際限な く濃縮される。これは本来起こるべき反応を不純物 が阻害する比率が上昇し続けることを示す。この濃 縮を防ぐため、電解液を常に供給・排出し続ける流 通型電解槽としている(Fig.2 下)。

これにより電解反応後の溶液の濃縮を防ぎ、常 に同条件で電解を行うことができる。しかし本実験 では上述した通り、低流量で高い電極反応速度 (=電流密度)を想定していること、および薄板状 流路であるために流路内流れが不均一となるため、 溶液がセル内に局所的に長時間滞留し、濃縮が 進行する。そこで本研究では、電解槽の流路構造 や形状を変化させ、電解槽内における濃縮の影響 も検討した。

3.研究の方法

3-1 実験装置

実験装置の概要を Fig.3 に示す。電解槽は陽極室・ 陰極室とも厚さ 1mm のガスケットで構成し、上部と下部 に流路を配置したエンドプレートを通して電解中も電解 液を流通させる構造とした。陽極室と陰極室は陽イオン 交換膜(Neosepta CMX, Astom Corp.)で隔てた。電極 は白金板電極および白金メッキ Ti 網(エキスパンドメタ ル)電極を用いた。電極サイズおよび有効膜面積は 8cm×11cm の 88cm²とした。これらを Fig.3(b)のように重 ね合わせて固定して流通型電解槽とした。電解中は模 擬海水(3.5 wt% NaCl 溶液)をベリスタポンプで両極室 に流通させた。電解は直流安定化電源(PMX18-5A. PAG100-15, 菊水電子工業)を用いて定電流で行い、 所定の時間が経過した後、H2, O2 は水上置換により採 取して、その体積から生成量を求めた。同様に出口溶 液を採取して、pH メーター(D-71S, 堀場製作所)およ び水質測定器(MD600, Lovibond)を用いて pH と Cl2 濃 度(残留塩素濃度)を定量した。

線形ボルタメトリー(LSV)測定は、作用極および対極に白金電極を用い、電解に用いたものと同種の陽イオン交換膜で隔てた。両極の電位はそれぞれ個別に市販の参照電極(Ag/AgCl 電極)を塩橋で繋ぎ、対照として測定した。測定はオートマチックポラリゼーションシステム(HSV-110, 北斗電工)を用いて、電流制御で 10mA/s で線形掃引した。

3-2 理論濃度計算

水素極側の理論出口濃度は、水素生成による H+消費速度 Rm およびイオン交換膜のイオン透過 速度 J と、溶液の流通流量 Q を元に算出した。電流値 I より H+消費速度 Rm と陽イオン透過速度 J を 算出した (Rm=J = I/F)。膜の透過イオン選択性 t+(Na+), t+(H+)は膜表面の濃度比に依存するとして、 模擬海水中に含まれる濃度比[H+]/[Na+]を透過イオン選択性として用いた。従って、水素極側の出口 溶液の水酸化物イオン濃度[OH-]は以下の式で求めた。式中の[OH-]。は初期溶液の OH-濃度を示 す。

$$[OH^{-}] = [OH^{-}]_{0} + \frac{R_{m} - t^{+}(H^{+})J}{Q}$$
$$t^{+}(H^{+}) = \frac{[H^{+}]}{[Na^{+}] + [H^{+}]}$$

酸素極側では酸素生成と塩素生成が競合する。理論出口濃度の算出に用いる反応選択性を η(Cl⁻), η(OH⁻)とすると、反応物である Cl-, OH-の消費速度は、それぞれ下式で表される。

$$R_m(Cl^-) = \eta(Cl^-)\frac{I}{F}$$
$$R_m(OH^-) = \eta(OH^-)\frac{I}{F}$$

従って、酸素極側の出口溶液の水素イオン濃度[H⁺]および塩素濃度[Cl₂]は以下の式で求めた。 式中の[H⁺]₀は初期溶液の H+濃度を示す。

$$[H^+] = [H^+]_0 + \frac{R_m(OH^-) - t^+(H^+)J}{Q}$$
$$[Cl_2] = \frac{\frac{1}{2}R_m(Cl^-)}{Q}$$

これらの計算で求められた理論出口濃度と、実際の出口濃度を比較して検討を行った。

4.研究成果

電極を Pt でメッキした Ti 網(エキスパンドメタル)電極を用い、同様の流通セルで種々の電流を印加 して海水電解を行った。溶液流量は 50 cm³/min で行った。水素極側の水素捕集量から求めた生成量 と、電流値から求めた理論生成量はよい一致を示し、量論通りに水素生成が起きていることが確認さ れた。この時の塩素生成量は、OH・/Cl・の濃度比からほぼ 100%が Cl₂ となると仮定された理論値 ()に対して、実際の Cl₂ 濃度()は理論濃度の 45 ~ 50%を示した(Fig.4)。溶液の pH も、理論値() では OH・消費がないため供給溶液の pH()から変化しないはずだが、出口溶液の実測pH(▲)はか

なり低く、出口溶液の Cl₂ 濃度から塩素選択性 $R_m(Cl^-)$ を 算出して求めた pH()と一致を示す(Fig.5)。この結果から、 カソード反応は量論通りに進行しており、反応選択性が酸素 生成に有利になった結果であることを示す。 これは Pt 板電極 においても同様の挙動を示した。このことから、流路の器壁で もある電極表面に生じる低線速度の領域、および網電極の 内部(網目を構成する金属線の間の領域)にある溶液は、流 通セルの中央より溶液が滞留する形となり、電極反応によっ て生じる濃度変化が大きくなる。例えば Cl・は電極反応によ って消費されて減少するため、流路出口に至る以前にほとん どが消費され、Cl⁻不足によりCl₂生成の選択性は低下すると 考えられる。そのため、酸素生成に有利な電解環境を形成 する。しかし板電極と比較して網電極は電流値の増大による 影響は小さい。これは網状の電極構造のため、板電極のよう なきれいな層流の濃度分布が形成されないため、バルク領 域からの撹拌・拡散による反応物供給が板電極ほど低下して いないためと推測する。また、電極表面で形成した気泡が浮 上する際の撹拌効果によっても差が生じると考えられる。また、 イオンの供給量を考慮するため、OH-、Cl-イオンの消費速 度を算出し、その電流値・流量による違いを Fig. 6 に示した。 その結果、電流値および流量の増大とともに OH - の消費、 すなわち酸素生成が有利になっていることが示された。これ らの結果は前述の選択性の発現機構と矛盾しない。

以上より、電極近傍の低線速度の領域や網電極の網目 内部に溶液が滞留して Cl - の消費が進むことで酸素生成が 有利になること、流量や印加電流、電極の選択などのセル構 造により、その効果は影響を受けることが示された。

一般に流通型セルを用いた電解では、電力消費量の低減を目的として、電極を膜の両面に密着さ せたゼロギャップ電極構造を取ることが多い。そこでこれまでのセル(type-I)に対して、電極位置をゼロ ギャップ構造としたセル(type-II)を構築して実験を行った。その結果より、type-Iと同じくpH 変化および Cl_2 生成量からは、 Cl_2 濃度から塩素選択性 $R_m(Cl^-)$ を算出して求めた pH と実測値がよい一致を示 すことから、電解反応が量論的に進行しており、酸素極では O2と Cl2の電解生成が競争的に起きてい ること、収量全体はファラデー効率に従っていることが確認できた。その結果から OH・、Cl・イオンの消 費速度を算出し、その電流値・流量による違いを Fig. 7 に示した。type-I の結果と比較すると、OH⁻の 消費速度は大きく減少し、Cl-の消費が支配的であることが示された。これは type-II では電極表面へ の Cl⁻供給が type-I より大きいことを示す。この時、pH の変化においても理論値と実測値の差が大き い。これは電極と膜が隣接しているため、電極で OH の消費とともに生成した H+の一部が膜を通して 水素極側に移動しており、バルク溶液側に移動しないため、出口溶液の pH 変化が抑制されたと考え られる。このイオン移動は水を伴って電気浸透流を生じるため、バルク溶液側から電極内部への溶液 の移動が生じ、Cl・供給にも寄与すると考えられる。このことから、電極と陽イオン交換膜を隣接させた type-II では、酸素極側から水素極側に陽イオンの移動による電気浸透流が生じ、これにより pH 変化 の抑制と Cl2 選択性の向上が起きていると考えられる。これは印加電流に相関するため、高電流を印 加するほど、その影響は増大すると推察される。従って、ゼロギャップ構造の電解セルは Cl2 生成に有 利となることが示された。そこで逆に、酸素極側をあえて膜から離した構造とすると、電気抵抗は増大 するものの、イオン移動の観点からは、水素極側の NaOH および酸素極側の O2 生成の選択性が向上

すると考えられる。

さらに、セル内における流れの偏りを生じないように、流路上下に液溜まりを付けたセル(type-III)を構築して実験を行った。その結果を Fig. 8 に示す。前述のセルは流路部の対角に溶液の入口 / 出口があり、対角線上に溶液が流れやすい構造となっているが、このセルは液溜まりから均等に溶液が流れていくため、溶液が下から上に均等に流れる構造となっている。この場合、本セルにおける電解中のOH - および Cl - の消費速度は、流量および電流値によらずほぼ同等であった。通常、静的な電解槽における海水電解では Cl2 生成がほぼ全てとなるが、この結果では OH - の消費はかなり多く、酸素生成にかなり有利となっているが、前述の 2 種のセルの結果と比較すると、その割合は低い。これはセル中の流れを均質にすることで面方向から見て滞留する領域が大きく減少したためと考えられる。これは溶液の滞留や線速度の低下が酸素選択性の増大に関与していることを示唆する。それにより前述した電極表面への Cl - の供給抑制がより顕著になること、および滞留時間の増加により流路部の溶液のCl - 濃度が低下したためと考えられる。従って、さらに流量を小さくするとか、流路構造を燃料電池セルで見られるような蛇行構造にして滞留時間を延ばすことにより、酸素選択性を増加させられると考えられる。

5.主な発表論文等

〔雑誌論文〕 計1件(うち査読付論文 0件 / うち国際共著 0件 / うちオープンアクセス 0件)

1.著者名	4.巻
遠藤宣隆	77
2 . 論文標題	5.発行年
薄板状電解セルを用いた海水電解における反応選択性の制御	2023年
3.雑誌名	6.最初と最後の頁
日本海水学会誌(Bull. Soc. Sea Water Sci., Jpn.)	12-19
「掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
なし	無
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計18件(うち招待講演 1件/うち国際学会 1件)1.発表者名

遠藤 宣隆, 山口 朝陽, 秋永 健斗

2.発表標題

薄板状電解セルの構造による海水電解のアノード反応への影響

3.学会等名日本海水学会第75年会

4.発表年 2024年

1.発表者名

遠藤 宣隆,山口 朝陽,秋永 健斗

2.発表標題

薄板状流路をもつ電解セルを用いた海水電解における対極反応の選択性制御

3 . 学会等名

化学工学会第89年会

4 . 発表年 2024年

1 . 発表者名 遠藤宣隆,権藤守,正田一成

2.発表標題

海水電解の電解セルおよび運転条件による正極反応の制御

3.学会等名日本海水学会第73年会

4.発表年 2022年

1.発表者名

遠藤宣隆, 権藤守, 正田一成

2.発表標題

薄板状電解セルを用いた海水電解における正極反応の制御

3.学会等名 日本膜学会第44年会

4 . 発表年 2022年

1 . 発表者名 正田一成,権藤守,遠藤宣隆

2.発表標題

薄板状電解セルを用いた海水電解におけるアノード反応の選択性制御

3 . 学会等名 化学工学会第53回秋季大会

4.発表年 2022年

1.発表者名 遠藤宣隆

2.発表標題

薄板状電解セルを用いた海水電解における反応選択性の制御

3.学会等名2022 年度 日本海水学会西日本支部講演会

4.発表年 2022年

1.発表者名

遠藤 宣隆,田中 駿光,正田 一成,新田 匠,山口 朝陽

2.発表標題

薄板状電解セルを用いた海水電解とその選択性制御

3 . 学会等名

化学工学会第88年会

4 . 発表年

2023年

1.発表者名

遠藤 宣隆, 田中 駿光, 正田 一成, 新田 匠, 山口 朝陽

2.発表標題

薄板状電解セルを用いた海水電解とアノード反応の選択性制御

3.学会等名 日本海水学会第74年会

4 . 発表年

2023年

1.発表者名

N. Endo, T, Tanaka, I. Masada, T. Yamaguchi

2.発表標題

Reaction selectivity control on seawater electrolysis using thin flow channel electrolysis cell

3 . 学会等名

13th International Congress on Membranes and Membrane Processes.

4.発表年 2023年

1.発表者名 遠藤宣隆,岡本雄大,岸本秀大

2.発表標題

海水電解における正極反応の電解セルおよび運転条件による影響

3.学会等名日本海水学会第72年会

口平冲小子云第12中云

4 . 発表年 2021年

1.発表者名

遠藤宣隆,鈴木祐麻,通阪栄一,垣花百合子,比嘉充,井上善之,熊越瑛,桑嶋知哉

2.発表標題

微生物燃料電池と逆電気透析の複合化による創エネ型下水処理プロセスの構築

3.学会等名

第58回下水道研究発表会

4 . 発表年

2021年

1.発表者名 遠藤宣隆,岡本雄大

2.発表標題

Effect of electrolysis cell structure and flow conditions on the seawater electrolysis

3 . 学会等名

第13回ジョイントセミナー(群山大学、山口大学)(招待講演)(国際学会)

4.発表年 2021年

1.発表者名 遠藤宣隆,岡本雄大,岸本秀大

2.発表標題

海水電解のアノード極における酸素選択性のセルおよび 運転条件による制御

3.学会等名 化学工学会第52回秋期大概

化学工学会第52回秋期大会

4.発表年 2021年

1.発表者名 遠藤 宣隆,田中 駿光,正田 一成

2.発表標題

薄板状電解セルを用いた水電解における海水利用とその選択性制御

3.学会等名
化学工学会第87年会

11子上子云乐0/牛云

4.発表年 2022年

1.発表者名

遠藤宣隆,仙波和也,伊達友宣,石川新茄

2.発表標題

薄板状の流路における低流量時の圧力損失の検討

3 . 学会等名

日本海水学会第71年会

4 . 発表年

2020年

1.発表者名

遠藤宣隆, 板谷尚樹, 岡本雄大, 田中翔吾, 国居明生

2.発表標題

海水電解における電解セルの構造および運転条件による影響

3.学会等名 日本海水学会第71年会

4 . 発表年

2020年

1.発表者名

遠藤宣隆,鈴木祐麻,通阪栄一,安川政宏,垣花百合子,比嘉充,井上善之,熊越瑛,碓井次郎,桑嶋知哉

2.発表標題

海水と下水の濃度差エネルギーを用いた 逆電気透析 - 微生物電解水素生成装置の開発

3.学会等名

第57回下水道研究発表会

4.発表年 2020年

1.発表者名

遠藤 宣隆, 板谷 尚樹, 岡本 雄大, 田中 翔吾, 岸本 秀大

2 . 発表標題

海水電解による水素製造における対極反応の制御

3 . 学会等名

化学工学会第51回秋季大会

4 . 発表年 2020年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況