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In this research, our objective has been to develop new computational tools
that can be applied to tackle diverse scientific and engineering problems. We have focused our
efforts on devising methods to improve the resource consumption of deep learning models.

To demonstrate the effectiveness of our algorithms, we have benchmarked them on a wide array of
scientific applications across the fields of neuro-science, biodiversity monitoring and material
science.
Beyond the tangible improvements in the computational efficiency, our work has also opened up new
avenues for interdisciplinary collaboration and innovation: Our software has been used to help an
Israeli startup prototype low-level vision models and, in partnership with the Paris Observatory, we
have been developing efficient hydrological models to improve our understanding of water resource
management and sustainability.
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The fourth paradigm of science [1] refers to the idea that the amount of scientific data collected is
increasing in scales much larger than scientists can individually make sense of. Hence, the ability of our
society to tackle future scientific challenges will depend on our ability to build information systems that

enable scientists to make sense of this data. Ten years after the formulation of “the fourth paradigm”
idea, progress in sensing and storage technologies have enabled various scientific communities to collect

and store scientific data on a new scale. Furthermore, in the past few years computer vision (CV) and
machine learning (ML) technologies have really begun to unlock key scientific breakthroughs: In late

2017 the Celeste project [2] has applied CV and ML to extract a complete catalogue of celestial objects in
the visible universe from 178 terabytes of telescopic images. In 2018, the AlphaFold [3] project leveraged
recent progress on deep reinforcement learning to provide unprecedented progress on the problem of
protein folding, a cornerstone for biological research.

These recent successes are illustrative of a deeper underlying phenomenon: As the scale of scientific data
collection increases, pattern recognition technologies will play an increasingly important role in future
scientific discoveries. Foreseeable applications of CV and ML to scientific challenges include, among
others, the mapping of the human brain’s connectome [4], scaling up physical simulations for the
development of energy systems [5], material discovery [6,7] and large-scale climate modeling [5]. At
large, recent scientific breakthroughs have been increasingly powered by advances in information
technologies: Advances in sensing and storage technologies have enabled various scientific communities
to collect very large amounts of data, while progress in machine learning and pattern recognition
techniques have enabled to extract key information from this large scale data. However, recent progress in
machine learning have been enabled by an exponential growth in computation power. In particular, the
advent of Graphical Processing Units (GPU) in the last ten years have unlocked the potential of Deep
Learning models for Computer Vision. As the computational cost of these models continue scaling up,
access to these models becomes increasingly more expensive to that the development and application of
the best performing models become increasingly concentrated in large technological institutions.

In this context, providing computational tools enabling the development of such models on more modest
infrastructure becomes increasingly important to the democratization and widespread benefit of these
technological benefits to a wider audience.
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The purpose of this project has been two-folds: First, we have aimed to contribute such toolset: our goal
is to scale up the computational efficiency of Computer Vision models for data-intensive scientific
applications. Second, our goal is to find practical and tractable technological challenges to address with
this toolset.

Regarding our first goal, we identify two axis optimization to improve the resource consumption cost of
large deep learning models: The computational efficiency (i.e.; reducing the computation time needed to
run one iteration of the iterative training algorithm) and the algorithmic efficiency (i.e.; reducing the
number of iterations needed by the optimization algorithm to train the model to convergence).

(1) Computational optimization

This project has focused on optimizing the memory consumption of Convolutional Neural Network
training and inference memory consumption, as well as computational efficiency through single node
performance tuning.

(2) Algorithmic optimization

The convergence rate of first-order iterative training algorithms like SGD is limited by the impact of
second order phenomenons. Hence, understanding the curvature of the loss landscape along the
optimization trajectory is key to optimize the algorithmic efficiency. My students and I have focused on
developing tools allowing to visualize and investigate the structure of curvature along the training
trajectories followed by SGD.

Regarding our second goal of practical applications, we have aimed to both optimize the performance of
computation workloads of models for scientific tasks that we had already identify, as well as find new



innovative applications to such workloads. These applications are described in more details in the
following section.

3. WD

This project has been conducted in tight collaboration with Professor Takiguchi’s laboratory, and a
number of academic and industrial partners. Professor Takiguchi has entrusted me with the supervision of
six graduate students from his laboratory. Together, we have defined a number of tasks differentiated into
core technical contributions and applicative benchmarks.

Core technological tasks:

(1) Single Node performance tuning: Investigation of workload-specific task-specific single node
performance tuning using the TVM framework.

(2) Training memory resource optimization: Development of algorithm allowing to reduce the memory
consumption of training large CNN so as to alleviate the GPU memory bottleneck of training CNN on
limited hardware

(3) Inference memory resource optimization: Development of algorithm allowing to reduce the memory
consumption of CNN inference so as to allow processing of large gridded data on limited hardware.

Applicative tasks: The following tasks have been defined in order to benchmark the efficiency of the
developed algorithms methods.

Figure 1: Illustration of the three original applications considered for this research. (Left): Neuron
segmentation, illustrated in 2D for convenience. (Middle) Copper surface analysis using weakly
supervised image segmentation. (Right): Insect population monitoring using object detection models.
These three problems involve processing large datasets of very high resolution images.

- Neuroscience: Observing neural tissues at the nano metric scale is required to accurately map neural
connections. To do so, terabytes of electron microscopy imaging of neural tissues at a resolution of a few
nano-meters need to be collected from which individual neuron connections are extracted. Automating
such extraction process is needed to map large neural structures.

- Material Science: Modeling the structure-property relationship of materials often require analyzing vast
amount of observations of the microstructure of their surfaces. In this project, we aim to leverage our
computational tool to analyse the bonding strength of copper surfaces used in the semi-conductor
industry.

- Ecosystem monitoring: At the bottom of the food chain, insect populations play a crucial role in
sustaining forest ecosystems. Our goal is to develop a system to monitor the population of insects based
on a light trap imaging.

While the three applications described above had been identified at the beginning of this project, two
additional applications have been found during the course of this research project:

- Hydrology: Vast amount of climatic data are analyzed to infer and predict the movement of water
resources. We have developed ML models for both monthly evaporation estimation and river discharge
modeling.



- Low-level computer vision: Recording videos in either very high speed or low luminosity settings
require heavy deep learning denoising, which is computationally complex to process with hard
computational and latency constraints for real-time usage. We investigate the application of our
computational tools to this additional use case.

The above projects all share the same computational constraint to train and evaluate large deep learning
models on large quantities of data within limited computational resources, which makes them suitable
benchmarks to evaluate our developed algorithms.
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We have focused our efforts on devising methods to improve the efficiency and performance of deep
learning models, thus reducing their computational burden. To demonstrate the effectiveness of our
algorithms, we have benchmarked them on a wide array of scientific applications across the fields of
neuro-science, biodiversity monitoring and material science.

Our work has not only led to tangible improvements in the computational efficiency of deep learning
models but has also opened up new avenues for interdisciplinary collaboration and innovation. Our
software has been used to help an Israeli startup prototype low-level vision models. Furthermore, in
partnership with the Paris Observatory, we have been developing efficient hydrological models that can
significantly improve our understanding of water resource management and sustainability.

In terms of academic publications, core methods derived in this research project have been presented in
dedicated publications for training memory optimization [8] and inference memory optimization [9]. On
the practical scientific application side, we have proposed a number of high performance models for
applications across hydrology [10,11], material sciences [12,13], high speed imaging [14,15], and
infrastructure monitoring [16].
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