®
2009 2013

Molecular Biomechanics of Vascular Cell Mechano-Responses

Ando, Joji

156,400,000 46,920,000

shear stress
shear stress
shear stress
ATP P2X4 Caz2+
Ca2+ shear stress Ca2+

This study was undertaken to elucidate how vascular endothelial cells (ECs) sense
shear stress generated by flowing blood and transmit the signal into the cell interior. The results demons
trated that shear stress rapidly decreases the lipid order of EC membranes and changes caveolar membrane d
omains from the liquid-ordered phase to liquid-disordered phase. A similar decrease in lipid order occurre
d in the artificial membrane of liposomes exposed to shear stress, suggesting that the membrane lipid orde
r change is a physical phenomenon. Shear stress clearly increased the membrane fluidity in ECs. A novel im
a?ing method developed in our laboratory revealed that the shear-stress-induced changes in membrane physic
al properties were linked to ATP release at caveolae that evoked a Ca2+ influx via P2X4 channels and a sub
sequent Ca2+ wave that propagated throughout the entire cell. These findings indicated that plasma membran
es act as a shear stress sensor that triggers Ca2+ signaling in ECs.
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