科学研究費助成事業(科学研究費補助金)研究成果報告書

平成24年5月21日現在

开究種目:基盤研究(B)
用究期間:2009~2011
果題番号:21360228
F究課題名(和文)海水環境下で生じる石灰・セメント混合処理土軟化現象の解明と評価に関
「る研究」
开究課題名(英文)Deterioration phenomenon of lime and cement treated soils under
eawater and its evaluation
用究代表者
林 重徳 (HAYASHI SHIGENORI)
佐賀大学・低平地沿岸海域研究センター・客員研究員
开究者番号:80112308

研究成果の概要(和文):本研究では海水環境下における石灰・セメント処理土の軟化現象を解 明するために,海水に浸漬させた処理土の特性を詳細に分析した.その結果,処理土は劣化の 進行に伴って水和物の溶解や変質に起因した間隙径分布の変化が生じる.さらに完全に劣化す ると固化処理前の母材に類似した構造となることを明らかにした.また,固化処理土の軟化速 度は固化材量や海水の濃度に左右される.この軟化速度は,コンクリートの中性化進行モデル と類似しており,シンプルな近似式で表示できる.

研究成果の概要(英文): In this study, in order to investigate the deterioration phenomenon of lime and cement treated soil, laboratory tests which used the treated soil immersed in seawater were performed. It was found that the total pore volume scarcely changed and the pore size at the maximum volume in the pore size distribution becomes large gradually with progress of deterioration. Furthermore, the pore size distribution of lime-treated soil deteriorated by seawater is much similar to that of Ariake clay before adding the lime. Deterioration progress is influenced by stabilizer content and Mg concentration of seawater. Deterioration speed of treated soil can be predicted in the same way as predicting the concrete neutralization, and it can be expressed by a simple approximation formula.

			(金額単位:円)
	直接経費	間接経費	合 計
2009年度	12, 100, 000	3, 630, 000	15, 730, 000
2010年度	1,000,000	300, 000	1, 300, 000
2011年度	1, 300, 000	390,000	1,690,000
年度			
年度			
総計	14, 400, 000	4, 320, 000	18, 720, 000

交付決定額

研究分野:工学

科研費の分科・細目:土木工学・地盤工学

キーワード:土質安定処理,石灰,セメント,劣化,間隙径分布,予測

1. 研究開始当初の背景

固化処理工法はわが国の主要な軟弱地盤 対策として盛んに利用されており、土木工事 への応用分野は広範囲に及んでいる.しかし ながら、固化処理土は曝される環境次第では、 その性状が劣化することが明らかになって きており、長期的な耐久性についての検討が 望まれている.さらに、塩分を含んだ海水が 遡上する有明海沿岸低平地域の感潮河川で は、約20年前に建設された堤防基礎部の石 灰処理土層が著しく軟化し,周囲一帯が湿地 化している箇所が数多く確認されており,処 理土の軟化(劣化)現象 についての調査・ 研究が望まれる.

2. 研究の目的

現在までに、室内試験から固化処理土は海水と接触すると処理土の固化成分であるカルシウム(Ca)が著しく溶出し、軟化することや Ca の溶出機構について明らかにした.しかし、未だ不明な点も多く詳細な調査が必要である.

本研究では、海水に浸漬した固化処理土に 対して各種試験を実施し、処理土の物理的な 視点での劣化機構や劣化の進行予測につい て明らかにすることを目的とする.

3.研究の方法

本研究の構成

本研究は以下の2つの検討項目から構成される.

固化処理土の間隙径分布の変化

本実験では、主にコンクリートにおいて、 水和物の生成やそれに伴う密実化などの現 象を把握するために水銀圧入法を用いた細 孔径の測定を固化処理土に対して適用し、海 水との接触によって生じる固化処理土の間 隙の総量や分布特性の変化を調べ、処理土の 物理的な劣化機構について検討した.

 ・
 ・

 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・
 ・

本実験では、固化材添加量の異なるセメン ト処理土を人工海水に浸漬し、軟化した範囲 を経時的に測定し、それらの実験結果から軟 化の進行速度について検討した.

(2) 使用した海水, 試料土ならびに固化材

天然の海水は採取する場所や深度等によって、その濃度が大きく変化する.そのため、本研究では、安定した海水濃度で実験するために人工海水を使用した.人工海水の主要な成分組成を表-1に示す.また、本文における海水濃度は、その海水のNaC1濃度(g/L)で表示する.

表-1 人工海水 (NaCl 濃度 20g/L) の成分表

	$x \sim = 80$	=/ =////5
分析項目(単位)		人工海水
カルシウムイオン	(mg/L)	280
ナトリウムイオン	(mg/L)	8,600
カリウムイオン	(mg/L)	230
マグネシウムイオン	(mg/L)	480
塩化物イオン	(mg/L)	15,000
炭酸水素イオン	(mg/L)	130
溶解性シリカ	(mg/L)	0.1
硫酸イオン	(mg/L)	2,100

試料土は, 佐賀県小城市の感潮河川の河口 域から採取した有明粘土である. 試料土の物 性を表-2 に示す. 固化材は生石灰(以下石灰) ならびに普通ポルトランドセメント(以下セ メント)である.

表-2 試料土の物性

土粒子密度	(g/cm ³)	2.65
液性限界	(%)	158.1
塑性限界	(%)	51.4
粒度組成	(%)	
礫		0.0
砂		0.0
シルト		21.9
粘土		78.1

(3) 供試体作成方法

供試体を作製する際には、まず試料土と固 化材を均質に混合するために試料土の含水 比を液性限界 m_0 の1.5倍(w=237.2%)に調 整した.次に、固化材を加えてミキサーで混 合した.固化材の添加量は石灰の場合35,50, 70kg/m³、セメントの場合50,70,100kg/m³ である.その後、プラスチック製の円筒型モ ールド($\phi=50$ mm,h=100mm)に詰めて上部をラ ップで覆い、20℃に調整した恒温器内で28 日間養生した.養生終了後、脱型した供試体 を実験に供した.

4. 研究成果

(1) 化学的な知見に基づく固化処理土の劣 化機構に関する既往の研究成果

著者らの既往の研究成果より、以下のよう な海水の影響による石灰・セメント処理土の 化学的な劣化機構を明らかにした.海水に浸 漬した石灰・セメント処理土は軟化した範囲 において,土中のpHの低下やCa濃度の減少, Mg 濃度の増加,供試体表層における硫酸カ ルシウム(CaSO₄)の堆積を確認した.これ らのことから,石灰処理土を海水に浸漬した 場合,海水中の Mg イオンが処理土内に移動 して水酸化カルシウム (Ca(OH)₂) と反応し、 塩化カルシウム (CaCl₂), CaSO₄ ならびに水 酸化マグネシウム (Mg(OH)₂) が生成され, それらが溶解・析出する. その結果, 処理土 内のCa濃度が減少すると同時に pH も低下す る. さらに, 土中の pH が著しく低下した状 態では、セメンテーション物質である珪酸カ ルシウム水和物(C-S-H)やアルミン酸カル シウム水和物(C-A-H)が溶解・変質して固 化処理土の強度が著しく低下する.

- (2) 間隙径分布からみた固化処理土の劣化 機構
- 実験方法と手順

作製した石灰処理土供試体のうち固化材 添加量 35kg/m³の供試体を NaC1 濃度 30g/L に 調整した人工海水に 38 日間浸漬させた. こ のとき,供試体にはゴムスリーブを被せた. なお,ゴムスリーブの下部は密閉し,海水と の接触は供試体上面のみとなるようにした. なお,4(1)で述べたように,固化処理土の 劣化は海水中のMgを消費しながら進行する. そこで,処理土の劣化を促進させるために, 浸漬期間中は人工海水を1回/週の頻度で交 換した.

間隙径分布を測定する試料の採取位置を 決めるために,海水に浸漬した供試体に対し て小型のコーン(径:6mm,先端角度:60°) を使用した貫入試験ならびに蛍光X線分析に よる土中の元素濃度の測定を実施し,貫入抵 抗およびカルシウム(Ca),マグネシウム(Mg) 濃度の深度分布を調べた

図-1 に 38 日間海水に浸漬した供試体(固 化材添加量:35kg/m³)と浸漬前の供試体の貫 入抵抗,CaおよびMg濃度の深度分布を示す. 浸漬前の供試体は,貫入の初期段階から急激 に貫入抵抗が発現し始める. それに対して, 海水に浸漬した供試体は,海水との接触面で ある表層付近において貫入抵抗の発現が認 められず,表層部の軟化が確認できる.貫入 抵抗の深度分布において、貫入抵抗がほとん ど発現しない範囲と急激に発現し始める範 囲が確認できる.これら2つの範囲をそれぞ れ直線で近似し、2 直線の交点の深さを劣化 深度 d "とする.この供試体の劣化深度は d₃₈=7.0mm であった.劣化深度以浅では浸漬前 に比べて固化材の主成分である Ca と処理土 の劣化を引き起こす原因物質である Mg の著 しい濃度変化がみられる.また,劣化深度以 深でも 17.5mm 付近まで Ca および Mg 濃度の 変化がみられる. 17.5mm 以深の Ca, Mg 濃度 は浸漬前とほぼ同じ濃度であり、深さ方向に もほとんど変化がみられない. ここで,以下 に記す方法で海水に浸漬した供試体を3つの 状態に区分する.貫入抵抗の発現がほとんど 認められず、著しく軟化していると考えられ る劣化深度以浅の範囲を劣化状態と定義す る.劣化深度以深において,貫入抵抗の発現 は認められるが、浸漬前に比べて Ca 濃度の

減少および Mg 濃度の増加が確認できる範囲 を劣化状態への遷移段階にあると考え、遷移 状態と定義する.貫入抵抗の発現がみられ, Ca および Mg 濃度の変化がみられない範囲は 浸漬前から大きな性質変化はないものと考 え、健全状態と定義する. それぞれの状態の 範囲からワイヤーソー,直ナイフ,ピンセッ ト等を用いて間隙径測定用の採取した.採取 した試料を5mm角程度に整形した後、速やか に液体窒素に浸して瞬間凍結し、真空乾燥機 を使用して乾燥させた.乾燥終了後,それぞ れの試料に対して水銀圧入式ポロシメータ ーを使用して間隙径分布の測定を実施した. また、海水に浸漬する前の供試体(固化材添 加量:35,50,70kg/m³),石灰を添加する前 の有明粘土についても同様の検討を行った. 水銀の表面張力 σ は 484×10⁻³N/m, 接触角 θ は140°とした. 間隙径は 0.006~210 μ m の範囲で,130 点測定した.

② 石灰処理によって生じる有明粘土の間隙 容積と間隙径分布の変化

有明粘土および海水浸漬前の石灰処理土 の累積間隙容積 ΣV_{dp} と間隙径 d_p の関係を図 -2示す. 固化材を添加していない有明粘土の 間隙容積は $d_{p=1}\mu$ m 付近から急激に増加し始 め,累積間隙容積 ΣV_{dp} は 2.3mL/g 程度であ った.海水浸漬前の石灰処理土は $d_{p=0.7\mu$ m 以下では固化材添加量が多いものほど間隙 容積が大きいが,それ以降はその傾向が逆転 し始める.最終的な累積間隙容積 ΣV_{dp} は固 化材添加量 35,50,70kg/m³でそれぞれ1.78, 1.64, 1.59mL/g であり,添加量が少ないもの ほど大きい.固化処理を行った試料の累積間 隙容積 ΣV_{dp} は有明粘土に比べて小さい.

有明粘土および海水浸漬前の石灰処理土 の間隙径の増分に対する水銀の圧入容積の 増分の比 d*V*/dlog*d*_pと間隙径 *d*_pの関係を図-3 に示す.有明粘土の場合,*d*_p=2μm 付近で鋭 いピークを示している.石灰処理土の場合, 35,50,70kg/m³でそれぞれ 0.5,0.4,0.1μm 付近にピークがみられ, 固化材添加量の増 加とともにピークを示す間隙径が小さくなっている.

有明粘土は固化処理を施すと、その固化材 の添加量によって間隙の総量が減少し、ピー クを示す間隙径が小さくなることがわかっ た.これらの結果は、ポゾラン反応による水 和物の生成に起因するものと考えられる.す なわち、固化処理によって生成された水和物 が有明粘土の間隙の大部分を占めていた 1~ 10 μ mの間隙を充填・細分化したため、総間 隙容積が減少し、固化材を添加する前の有明 粘土に比べて小さな径の間隙が卓越する構 造になったと推察される.

図-3 有明粘土,石灰処理土の間隙径分布

③ 海水浸漬によって生じる石灰処理土の間 隙容積と間隙径分布の変化

海水浸漬前および浸漬後の各状態におけ る石灰処理土の累積間隙容積 ΣV_{a} と間隙径 d_{o} の関係を図-4 に示す.浸漬前,健全状態, 遷移状態,劣化状態の累積間隙容積 ΣV_{a} は 1.7mL/g 程度であった.遷移状態は他の状態 の試料に比べ,若干小さな値を示したが大き な差異はみられなかった.

図-4 各状態の石灰処理土の累積間隙曲線

海水浸漬前および浸漬後の各状態におけ る石灰処理土の dV/dlogd と間隙径 d,の関係 を図-5 に示す.健全状態の場合, d,=0.4µm 付近でピークを示し,浸漬前の間隙径分布と ほぼ一致している. 遷移状態の場合, 健全状 態や浸漬前と同じ間隙径の付近でピークを 示すが, ピーク値が減少していることがわか る.また, $d_p=2\mu m$ 付近でもう一つのピークが 観測される.劣化状態の場合,他の状態の試 料においてみられた $d_p=0.4\mu m$ 付近ではピー クは現れず,遷移状態の第2のピークが観測 された $d_p=2\mu m$ 付近で鋭いピークを示し,健全 状態や浸漬前と比較すると,ピーク値を示す 間隙径が大きい方へシフトしていることが 分かる.

図-5 各状態の石灰処理土の間隙径分布

有明粘土および劣化状態の石灰処理土の dV/dlogd_と間隙径 d_の関係を図-6 に示す. ピークの値は異なるものの,両試料とも d_=2µm付近で鋭いピークを示しており,非常 に類似した分布形状を示していることがわ かる.

石灰処理土は海水の影響を受けると,間隙 の総量をほぼ一定に保った状態で間隙径分 布が変化することが明らかになった.これは, 図-1に示した元素分析の結果から,処理土中 の化学組成の変化とともに固化処理によっ て供試体中の間隙を充填した水和物が海水 の影響によって溶解したことや,Mgを含む水 和物が生成されて逆に間隙を充填したこと が原因と考えられる.

(3) 劣化の進行予測に関する検討

実験方法と手順

固化材添加量 50,70,100kg/m³のセメント 処理土供試体を NaCl 濃度を 10,20,30g/L に調整した人工海水にそれぞれ浸漬した.浸 漬時間は 28,56,84,168 日である.本実験 では,浸漬水である海水の交換を実施する場 合としない場合の両条件浸漬を行った.なお, 海水の交換頻度は 1 回/週とした.所定の期 間浸漬後の供試体に対して小型コーン貫入 試験を実施した.

② 浸漬条件が劣化に及ぼす影響

NaC1濃度を 20g/Lに調整した人工海水に浸 漬させた固化材添加量 50,70,100kg/m³の供 試体の貫入抵抗 Fの深度分布を図-7 に示す. 浸漬前の供試体は貫入の初期段階で貫入抵 抗が急激に発現し始め,深度 10mm 前後で一 定の値を示し始める.それに対して,海水に 浸漬した供試体は表層付近において貫入抵 抗の発現はほとんどみられない.さらに,浸 漬時間に伴って貫入抵抗の発現がみられな い範囲が広くなっていることがわかる.劣化 深度の経時変化を図-8 に示す.劣化深度は浸 漬時間が長く,セメント添加量が少ないもの ほど深い傾向がある.同じ固化材添加量の供 試体で比較すると海水の交換を実施したケ

ースの方が劣化深度が深い. さらに, 海水交換の有無による劣化深度の差は浸漬時間とともに次第に大きくなることがわかる. これは, 海水交換を実施しないケースでは, 浸漬時間とともに浸漬水中の Mg イオン濃度が減少したことが原因と考えられる.

図-8 劣化深度の経時変化(NaCl 濃度 20g/L)

③ 劣化の進行予測に関する検討

セメント処理土の劣化が,浸漬水中のMgイ オンの拡散によって生じると考え,大気中の 炭酸ガスの拡散によるコンクリートの中性化 進行予測モデルを基に,海水交換を実施した ケースにおいて,実験で得られた劣化深度に 対して次式で近似化を試みた.

$$d_n = A\sqrt{t} \qquad (1)$$

近似曲線を図-9に示す.いずれの固化材添加 量および海水(NaC1)濃度についても近似曲 線と実験値の間に大きな乖離はみられず,非 常に良い近似となる.このことから,セメン ト処理土の劣化は海水への浸漬(接触)時間 の平方根に比例して進行すると考えられる. 式(1)係数Aは,固化材添加量や海水の濃度 など多くの内的および外的要因によって定 まる関数であると考えられる.これに関する 検討は今後の課題としたい.

- 〔雑誌論文〕(計5件)
- 原弘行,<u>未次大輔</u>,<u>林重徳</u>:海水環境下 における石灰処理土のカルシウム溶出機 構,材料, Vol. 61, No. 1, pp. 11-14, 2012.
- 原弘行,<u>末次大輔</u>,<u>林重徳</u>:地下水の塩 水化が石灰処理土の間隙径分布に及ぼす 影響,環境地盤工学シンポジウム論文集 Vol.9, pp.227-230, 2011.
- (3) H. Hara, <u>D. Suetsugu</u> and Yoshihisa Miyata: Long Term Performance of Lime Treated Soil near Seaside, International conference on advances in geotechnical engineering, pp. 537-542, 2011.
- ④ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:石灰処理土 の固化成分の溶出に及ぼす海水の影響,
 第 9 回地盤改良シンポジウム論文集,
 Vol. 9, pp67-70, 2010. 11.
- (5) H. Hara, <u>D. Suetsugu</u>, <u>S. Hayashi</u>: Effects of lime content on deterioration of lime-treated soil immersed in seawater, Proc. of International Symposium on Lowland

Technology, pp. 147-151, 2010.

〔学会発表〕(計9件)

- 鈴木裕美,<u>末次大輔</u>,原弘行,渡辺江美: 「セメント処理土の海水劣化促進実験に おける海水交換の影響について」,平成23 年度土木学会西部支部研究発表会講演概 要集,pp357-358,(鹿児島2012年3月).
- 渡辺江美,<u>末次大輔</u>,原弘行,鈴木裕美: 「ベンダーエレメント試験による海水浸 漬した石灰処理土の剛性率分布の測定」, 平成23年度土木学会西部支部研究発表会 講演概要集,pp349-350,(鹿児島 2012 年3月).
- ③ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:「海水環境下 におけるセメント混合処理した有明粘土 の間隙径分布の変化」,土木学会第 66 回 年次学術講演会,pp25-26,(松山 2011 年9月).
- ④ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:「海水環境下 における石灰処理土の間隙径分布の変 化」,第46回地盤工学研究発表会,pp5-6, (神戸2011年7月).
- ⑤ 大坪桂子,原弘行,<u>末次大輔</u>:「海水に浸 漬させた石灰処理土の間隙径分布の変 化」,平成22年度土木学会西部支部研究 発表会講演概要集,pp477-478,(北九州 2011年3月)
- ⑥ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:「海水浸漬により軟化した石灰処理土の圧密特性」,土 木学会第 65 回年次学術講演会, pp1047-1048,(北海道 2010年9月)
- ⑦ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:「石灰処理土 の含水比に及ぼす海水の影響」,第45回 地盤工学研究発表会,pp.607-608,(松山 2010年8月).
- ⑧ 原弘行,<u>末次大輔</u>,<u>林重徳</u>:「海水に浸漬したセメント処理土の物性変化」,平成21 年度土木学会西部支部研究発表会講演概 要集,pp433-434,(熊本 2010年3月).
- ⑨ 水城正博, <u>末次大輔</u>, <u>林重徳</u>, 原弘行:「海水に浸漬させ軟化した固化処理土の圧密特性について」, 平成 21 年度土木学会西部支部研究発表会講演概要集, pp435-436, (熊本 2010年3月).

6. 研究組織

- (1)研究代表者
- 林 重徳 (SHIGENORI HAYASHI)

佐賀大学・低平地沿岸海域研究センター・客 員研究員

研究者番号:80112308

- (2)研究分担者 末次大輔 (SUETSUGU DAISUKE)
- 佐賀大学・低平地沿岸海域研究センター・准

教授

研究者番号:30423619